5 0 5 0 × ∫ 0 1 ( 1 − x 5 0 ) 1 0 1 d x ∫ 0 1 ( 1 − x 5 0 ) 1 0 0 d x = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
If the lower integral is I 2 = ∫ 0 1 ( 1 − x 5 0 ) 1 0 1 d x & upper integral I 1 = ∫ 0 1 ( 1 − x 5 0 ) 1 0 0 d x
then we want to evaluate S = I 2 5 0 5 0 I 1
Apply IBP on I 2 to get, I 2 = x ( 1 − x 5 0 ) ] 0 1 + 5 0 5 0 ∫ 0 1 x 5 0 ( 1 − x 5 0 ) 1 0 0 = 0 + 5 0 5 0 ∫ 0 1 ( 1 − ( 1 − x 5 0 ) ) ( 1 − x 5 0 ) 1 0 0 d x
So, I 2 = 5 0 5 0 ( ∫ 0 1 ( 1 − x 5 0 ) 1 0 0 ) d x − 5 0 5 0 ∫ 0 1 ( 1 − x 5 0 ) 1 0 1 d x ⟹ I 2 = 5 0 5 0 ( I 1 − I 2 )
Thus , I 2 5 0 5 0 I 1 = 5 0 5 1
Problem Loading...
Note Loading...
Set Loading...
I 0 = ∫ 0 1 ( 1 − x 5 0 ) 1 0 0 d x = ∫ 0 1 5 0 u − 5 0 4 9 ( 1 − u ) 1 0 0 d u = 5 0 B ( 1 − 5 0 4 9 , 1 + 1 0 0 ) = 5 0 B ( 5 0 1 , 1 0 1 ) = 5 0 Γ ( 5 0 5 0 5 1 ) Γ ( 5 0 1 ) Γ ( 1 0 1 ) Let u = x 5 0 ⟹ d x = 5 0 u − 5 0 4 9 d u B ( m , n ) is beta function Γ ( x ) is gamma function
Similarly, I 1 = ∫ 0 1 ( 1 − x 5 0 ) 1 0 1 d x = 5 0 Γ ( 5 0 5 1 0 1 ) Γ ( 5 0 1 ) Γ ( 1 0 2 )
⟹ 5 0 5 0 × I 1 I 0 = 5 0 5 0 ⋅ 5 0 Γ ( 5 0 5 0 5 1 ) Γ ( 5 0 1 ) Γ ( 1 0 1 ) ⋅ Γ ( 5 0 1 ) Γ ( 1 0 2 ) 5 0 Γ ( 5 0 5 1 0 1 ) = 5 0 5 0 ⋅ Γ ( 1 0 2 ) Γ ( 5 0 5 0 5 1 ) Γ ( 1 0 1 ) Γ ( 5 0 5 1 0 1 ) = 5 0 5 0 ⋅ 1 0 1 ! ⋅ 5 0 2 5 2 5 5 0 4 9 ! ! ⋅ Γ ( 5 0 1 ) 1 0 0 ! ⋅ 5 0 2 5 2 6 5 0 5 1 ! ! ⋅ Γ ( 5 0 1 ) = 5 0 5 0 ⋅ 1 0 1 ⋅ 5 0 5 0 5 1 = 5 0 5 1
References: