A calculus problem by A Former Brilliant Member

Calculus Level 4

5050 × 0 1 ( 1 x 50 ) 100 d x 0 1 ( 1 x 50 ) 101 d x = ? \large 5050 \times \dfrac{\displaystyle \int_0^1 (1-x^{50})^{100} \, dx }{\displaystyle \int_0^1 (1-x^{50})^{101} \, dx } = \, ?


The answer is 5051.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 16, 2016

I 0 = 0 1 ( 1 x 50 ) 100 d x Let u = x 50 d x = u 49 50 50 d u = 0 1 u 49 50 ( 1 u ) 100 50 d u = B ( 1 49 50 , 1 + 100 ) 50 B ( m , n ) is beta function = B ( 1 50 , 101 ) 50 = Γ ( 1 50 ) Γ ( 101 ) 50 Γ ( 5051 50 ) Γ ( x ) is gamma function \begin{aligned} I_0 & = \int_0^1 \left(1-\color{#3D99F6}{x^{50}} \right)^{100} dx & \small \color{#3D99F6}{\text{Let }u=x^{50} \implies dx = \frac {u^{-\frac{49}{50}}}{50}du} \\ & = \int_0^1 \frac {u^{-\frac{49}{50}} (1-u)^{100}}{50} du \\ & = \frac {\color{#3D99F6}{B \left(1-\frac {49}{50}, 1+100 \right)}}{50} & \small \color{#3D99F6}{B(m,n) \text{ is beta function}} \\ & = \frac {B \left(\frac 1{50}, 101 \right)}{50} \\ & = \frac {\Gamma \left(\frac 1{50} \right) \Gamma \left(101 \right)}{50 \Gamma \left(\frac {5051}{50} \right)} & \small \color{#3D99F6}{\Gamma (x) \text{ is gamma function}} \end{aligned}

Similarly, I 1 = 0 1 ( 1 x 50 ) 101 d x = Γ ( 1 50 ) Γ ( 102 ) 50 Γ ( 5101 50 ) \begin{aligned} I_1 & = \int_0^1 \left(1-x^{50} \right)^{101} dx = \frac {\Gamma \left(\frac 1{50} \right) \Gamma \left(102 \right)}{50 \Gamma \left(\frac {5101}{50} \right)} \end{aligned}

5050 × I 0 I 1 = 5050 Γ ( 1 50 ) Γ ( 101 ) 50 Γ ( 5051 50 ) 50 Γ ( 5101 50 ) Γ ( 1 50 ) Γ ( 102 ) = 5050 Γ ( 101 ) Γ ( 5101 50 ) Γ ( 102 ) Γ ( 5051 50 ) = 5050 100 ! 5051 ! ! 5 0 2526 Γ ( 1 50 ) 101 ! 5049 ! ! 5 0 2525 Γ ( 1 50 ) = 5050 5051 101 50 = 5051 \begin{aligned} \implies 5050 \times \frac {I_0}{I_1} & = 5050 \cdot \frac {\Gamma \left(\frac 1{50} \right) \Gamma \left(101 \right)}{50 \Gamma \left(\frac {5051}{50} \right)} \cdot \frac {50 \Gamma \left(\frac {5101}{50} \right)}{\Gamma \left(\frac 1{50} \right) \Gamma \left(102 \right)} \\ & = 5050 \cdot \frac {\Gamma \left(101 \right) \Gamma \left(\frac {5101}{50} \right)}{\Gamma \left(102 \right) \Gamma \left(\frac {5051}{50} \right)} \\ & = 5050 \cdot \frac {100! \cdot \frac {5051!!}{50^{2526}} \cdot \Gamma \left(\frac 1{50} \right)}{101! \cdot \frac {5049!!}{50^{2525}} \cdot \Gamma \left(\frac 1{50} \right)} \\ & = 5050 \cdot \frac {5051}{101 \cdot 50} \\ & = \boxed{5051} \end{aligned}


References:

If the lower integral is I 2 = 0 1 ( 1 x 50 ) 101 d x \displaystyle I_2=\int_{0}^{1} (1-x^{50})^{101} dx & upper integral I 1 = 0 1 ( 1 x 50 ) 100 d x \displaystyle I_1=\int_{0}^{1} (1-x^{50})^{100} dx

then we want to evaluate S = 5050 I 1 I 2 \displaystyle S=\frac{5050I_1}{I_2}

Apply IBP on I 2 I_2 to get, I 2 = x ( 1 x 50 ) ] 0 1 + 5050 0 1 x 50 ( 1 x 50 ) 100 = 0 + 5050 0 1 ( 1 ( 1 x 50 ) ) ( 1 x 50 ) 100 d x \displaystyle I_2 = x(1-x^{50})]_{0}^{1}+5050\int_{0}^{1} x^{50}(1-x^{50})^{100} = 0+5050\int_{0}^{1}(1-(1-x^{50}))(1-x^{50})^{100} dx

So, I 2 = 5050 ( 0 1 ( 1 x 50 ) 1 00 ) d x 5050 0 1 ( 1 x 50 ) 101 d x I 2 = 5050 ( I 1 I 2 ) \displaystyle I_2=5050(\int_{0}^{1} (1-x^{50})^100)dx - 5050\int_{0}^{1} (1-x^{50})^{101} dx \implies I_2=5050(I_1-I_2)

Thus , 5050 I 1 I 2 = 5051 \displaystyle \frac{5050I_1}{I_2}=5051

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...