A Tricky Integral

Calculus Level 3

Evaluate the integral 0 ln x x 2 + 2 x + 4 d x . \displaystyle \int_{0}^{\infty} \frac{\ln x}{x^2+2x+4} \, dx.

Round your answer to three decimal places.


The answer is 0.419.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sudeep Salgia
Mar 12, 2014

Let the given integral be I I .Therefore,
I = 0 ln x x 2 + 2 x + 4 d x I = \int_0^\infty \frac{\ln x}{x^2 + 2x + 4} dx
Put x = 4 t x = \frac{4}{t} . Therefore, d x = 4 d t t 2 dx = -4\frac{dt}{t^2} .The integral can thus be rewritten as,

I = 0 ln ( 4 t ) 16 t 2 + 8 t + 4 ( 4 d t t 2 ) I = \int_\infty^0 \frac{\ln(\frac{4}{t})}{\frac{16}{t^2} + \frac{8}{t} + 4} \bigg(-4\frac{dt}{t^2}\bigg)

Note the change in limits (in the steps above and below). Therefore, taking lcm and rewriting the integral we get,

I = 0 ln 4 ln t t 2 + 2 t + 4 d t I = \int_0^\infty \frac{\ln 4 - \ln t}{t^2 + 2t + 4} dt

I = 0 ln 4 t 2 + 2 t + 4 d t 0 ln t t 2 + 2 t + 4 d t \Rightarrow I = \int_0^\infty \frac{\ln 4}{t^2 + 2t + 4} dt - \int_0^\infty \frac{\ln t}{t^2 + 2t + 4}dt

I = 0 ln 4 ( t + 1 ) 2 + 3 d t I \Rightarrow I = \int_0^\infty \frac{\ln 4}{(t+1)^2 + 3} dt - I

2 I = ln 4 0 d t ( t + 1 ) 2 + 3 \Rightarrow 2I = \ln 4 \int_0^\infty \frac{dt}{(t+1)^2 + 3}

It is a standard integral equal to 1 3 arctan ( t + 1 3 ) \frac{1}{\sqrt{3}} \arctan\bigg(\frac{t+1}{\sqrt{3}}\bigg) . Substituting the limits, we get,

2 I = ln 4 3 [ arctan ( ) arctan ( 1 3 ) ] \Rightarrow 2I = \frac{\ln 4}{\sqrt{3}} \bigg[ \arctan(\infty) - \arctan(\frac{1}{\sqrt{3}})\bigg]

I = ln 4 2 3 ( π 2 π 6 ) \Rightarrow I = \frac{\ln 4}{2\sqrt{3}} \bigg( \frac{\pi}{2} - \frac{\pi}{6} \bigg)

I = π 6 3 × ln 4 = 0.419 \Rightarrow I = \frac{\pi}{6\sqrt{3}} \times \ln 4 = \boxed{0.419}

A little bit advice, do not ever write: arctan ( ) \arctan(\infty) because infinity is not a number, but merely a concept . You must write:

lim t arctan ( t + 1 3 ) = π 2 . \lim_{t\to\infty}\arctan\left(\frac{t+1}{\sqrt{3}}\right)=\frac{\pi}{2}.

Overall, this is a good solution. :)

Tunk-Fey Ariawan - 7 years, 2 months ago

Nice solution.....and what was your motivation behind putting x=4/t ?

Aabhas Mathur - 7 years, 3 months ago

Log in to reply

motive is to: firstly, introduce a -ve sign, thereby (1/t). Secondly, to retain the denominator, since quadratic in denominator, tsq will be produced in numerator after substitution by the quadratic. At the same time the transition from dx to dt will return a tsq in denominator. the tsq will cancel and -ve will retain. If not visible at a glance, substitute (x=m/t). dx will return (-m/tsq)dt. divide nume and deno by m. Now look at [xsq + 2x +4] then look at the substituted equation [4tsq/m + 2t + m] and you realize that if someone chooses a=4, their deno will match

Jayant Kumar - 7 years, 2 months ago

Log in to reply

Got it..Thanks!!!

Aabhas Mathur - 7 years, 2 months ago

My solution is somewhat similar though I removed the infinity thus needing not to calculate the limiting case.

Abhijeeth Babu - 7 years, 2 months ago

There was a technique to introduce new variable. Nice Solution.

Broad Heart - 7 years, 2 months ago

Nice :)

Yash Kumar Gupta - 7 years, 2 months ago

Holy s *

Wonderful

Milly Choochoo - 7 years, 2 months ago

Nice solution

Shirish Chinchanikar - 2 years, 3 months ago

What a nice solution! Try the substitution x =2t at the very beginning and things will become much easier.

Haosen Chen - 1 year, 5 months ago

what's the motivation of doing substitution 4 x = t \frac{4}{x} = t ? what would happen if i just let 1 x = t \frac{1}{x} = t ?

Bostang Palaguna - 5 months, 2 weeks ago

squarer(F)

Parth Thakkar
Mar 12, 2014

We're given that:

I = 0 ln x ( x + 1 ) 2 + ( 3 ) 2 d x \displaystyle I = \int_0^\infty \dfrac{ \ln x } { (x+1)^2 + (\sqrt 3)^2 } dx .

Letting x + 1 = 3 tan θ x+1 = \sqrt 3 \tan \theta , we get d x = 3 sec 2 θ d θ dx = \sqrt 3 \sec^2 \theta d\theta . So, the integral then can be written as:

I = π / 6 π / 2 ln ( 3 tan θ 1 ) 3 d θ \displaystyle I = \int_{\pi/6}^{\pi/2} \dfrac{ \ln( \sqrt3\tan \theta - 1) } { \sqrt 3 } d\theta

Or:

I = 1 3 π / 6 π / 2 ln ( 3 tan ( 2 π 3 θ ) 1 ) d θ \displaystyle I = \dfrac 1 {\sqrt 3}\int_{\pi/6}^{\pi/2} \ln\left( \sqrt3\tan \left(\dfrac{2\pi} {3} - \theta\right) - 1\right) d\theta

This can be simplified to:

I = 1 3 π / 6 π / 2 ln ( 4 3 tan θ 1 ) d θ = 1 3 π / 6 π / 2 ln 4 d θ I \displaystyle \begin{aligned} I &= \dfrac 1 {\sqrt 3}\int_{\pi/6}^{\pi/2} \ln\left( \dfrac 4 { \sqrt3\tan \theta - 1}\right) d\theta \\ &= \dfrac 1 {\sqrt 3}\int_{\pi/6}^{\pi/2} \ln 4 d\theta - I \\ \end{aligned}

Which gives us I = π ln 2 3 3 \displaystyle I = \dfrac {\pi \ln 2 } {3 \sqrt 3 } .

This is how I did it..

Anish Puthuraya - 7 years, 3 months ago

_ /\ _

Shantanu Nathan - 7 years, 3 months ago

how to do the simplification "This can be simplified to:"??

who ting - 5 years, 2 months ago
Lorenzo Bastonero
May 22, 2019

Using the property of logarithms, we can rewrite the integral as:

0 d x log x 2 + log 2 x 2 + 2 x + 4 = I 1 + I 2 \int_0^{\infty} dx\,\frac{\log\frac{x}{2} +\, \log 2}{x^2+2x+4} = I_1 + I_2

With I 1 I_1 and I 2 I_2 as:

I 1 = 0 d x log x 2 x 2 + 2 x + 4 I 2 = 0 d x log 2 x 2 + 2 x + 4 I_1 = \int_0^{\infty} dx\,\frac{\log\frac{x}{2}}{x^2+2x+4} \, \qquad I_2 = \int_0^{\infty}dx\, \frac{ \log 2}{x^2+2x+4}

Now we concentrate our attention to I 1 I_1 . Let x = 2 y x = 2 y and we got:

I 1 = 1 2 0 d y log y y 2 + y + 1 I_1 = \frac{1}{2} \int_0^{\infty} dy \,\frac{\log y}{y^2+y+1}

Looking at the denominator, we think at the substitution y = e z y = e^z in order to obtain an hyperbolic cosine (watch out the integration extreme):

I 1 = 1 2 d z z 1 + 2 cosh z I_1 = \frac{1}{2} \int_{-\infty}^{\infty}dz\, \frac{z}{1+2 \cosh z} = 0

In fact this is an odd function integrated over an even domain, so it vanishes! We remain with I 2 I_2 , that is easily integrated, thus our integral value is:

0 d x log x x 2 + 2 x + 4 = I 1 + I 2 = I 2 = π log 2 3 3 0.419 \int_0^{\infty} dx\,\frac{\log x}{x^2+2x+4} = I_1 + I_2 = I_2 = \frac{\pi \log 2}{3 \sqrt{3}} \approx 0.419

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...