∫ 0 4 π cos 4 x + ( 2 sin x ) 2 sin 2 x − 8 sin 2 x − 4 sin 2 x + 7 8 cot ( 4 π + x ) d x = a ln ( a ) − a 1
Find the value of a .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
The given integrand is as follows. The first steps are to simplify the denominator using trigonometric identities.
I = cos 4 x + 4 sin 2 x sin 2 x − 8 sin 2 x − 4 sin 2 x + 7 8 cot ( 4 π + x ) ⟹ I = 1 − 2 sin 2 2 x + 4 sin 2 x sin 2 x − 8 sin 2 x − 4 sin 2 x + 7 8 cot ( 4 π + x ) ⟹ I = 8 − 8 sin 2 x − 2 sin 2 2 x − 4 sin 2 x ( 1 − sin 2 x ) 8 cot ( 4 π + x ) ⟹ I = 8 cos 2 x − 2 sin 2 2 x − 4 sin 2 x cos 2 x 8 cot ( 4 π + x ) ⟹ I = 8 cos 2 x − 8 sin 2 x cos 2 x − 8 sin x cos 3 x 8 cot ( 4 π + x ) ⟹ I = cos 2 x ( 8 − 8 sin 2 x ) − 8 sin x cos 3 x 8 cot ( 4 π + x ) ⟹ I = 8 cos 4 x − 8 sin x cos 3 x 8 cot ( 4 π + x ) ⟹ I = 8 cos 3 x ( cos x − sin x ) 8 cot ( 4 π + x ) ⟹ I = 8 2 cos 3 x ( 2 cos x − 2 sin x ) 8 cot ( 4 π + x ) ⟹ I = 8 2 cos 3 x cos ( 4 π + x ) 8 cot ( 4 π + x ) ⟹ I = 2 cos 3 x sin ( 4 π + x ) 1 ⟹ I = cos x + sin x sec 3 x ⟹ I = 1 + tan x sec 4 x ⟹ I = 1 + tan x ( 1 + tan 2 x ) sec 2 x
Now:
A = ∫ 0 π / 4 I d x = ∫ 0 π / 4 1 + tan x ( 1 + tan 2 x ) sec 2 x d x
Taking z = tan x transforms the integral to:
A = ∫ 0 1 1 + z 1 + z 2 d z = ∫ 0 1 1 + z 1 d z + ∫ 0 1 1 + z z 2 d z A = ∫ 0 1 1 + z 1 d z + ∫ 0 1 1 + z z 2 d z = ∫ 0 1 1 + z 1 d z + ∫ 0 1 1 + z z 2 − 1 + 1 d z A = 2 ∫ 0 1 1 + z 1 d z + ∫ 0 1 ( z − 1 ) d z
From this point, it is easy to show that the integral evaluates to:
A = ∫ 0 π / 4 cos 4 x + 4 sin 2 x sin 2 x − 8 sin 2 x − 4 sin 2 x + 7 8 cot ( 4 π + x ) d x = 2 ln 2 − 2 1