it's Trigonometric Integral

Calculus Level 4

0 π 4 8 cot ( π 4 + x ) cos 4 x + ( 2 sin x ) 2 sin 2 x 8 sin 2 x 4 sin 2 x + 7 d x = a ln ( a ) 1 a \int_{0}^{\frac{\pi}{4}}\frac{8\cot(\frac{\pi}{4}+x)}{\cos4x+(2\sin x)^2\sin2x-8\sin^{2}x-4\sin2x+7} \, dx=a\ln (a) - \dfrac{1}{a}

Find the value of a . a.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Chatrath
Mar 30, 2021

The given integrand is as follows. The first steps are to simplify the denominator using trigonometric identities.

I = 8 cot ( π 4 + x ) cos 4 x + 4 sin 2 x sin 2 x 8 sin 2 x 4 sin 2 x + 7 I = \frac{8 \cot\left(\frac{\pi}{4} + x\right)}{\cos{4x} + 4\sin^2{x}\sin{2x} - 8\sin^2{x} - 4\sin{2x} + 7} I = 8 cot ( π 4 + x ) 1 2 sin 2 2 x + 4 sin 2 x sin 2 x 8 sin 2 x 4 sin 2 x + 7 \implies I = \frac{8 \cot\left(\frac{\pi}{4} + x\right)}{1 - 2\sin^2{2x} + 4\sin^2{x}\sin{2x} - 8\sin^2{x} - 4\sin{2x} + 7} I = 8 cot ( π 4 + x ) 8 8 sin 2 x 2 sin 2 2 x 4 sin 2 x ( 1 sin 2 x ) \implies I = \frac{8 \cot\left(\frac{\pi}{4} + x\right)}{8 - 8\sin^2{x}- 2\sin^2{2x} -4\sin{2x}( 1-\sin^2{x}) } I = 8 cot ( π 4 + x ) 8 cos 2 x 2 sin 2 2 x 4 sin 2 x cos 2 x \implies I = \frac{8 \cot\left(\frac{\pi}{4} + x\right)}{8\cos^2{x}- 2\sin^2{2x} -4\sin{2x}\cos^2{x} } I = 8 cot ( π 4 + x ) 8 cos 2 x 8 sin 2 x cos 2 x 8 sin x cos 3 x \implies I = \frac{8 \cot\left(\frac{\pi}{4} + x\right)}{8\cos^2{x}- 8\sin^2{x}\cos^2{x} -8\sin{x}\cos^3{x} } I = 8 cot ( π 4 + x ) cos 2 x ( 8 8 sin 2 x ) 8 sin x cos 3 x \implies I = \frac{8 \cot\left(\frac{\pi}{4} + x\right)}{\cos^2{x}(8- 8\sin^2{x}) -8\sin{x}\cos^3{x} } I = 8 cot ( π 4 + x ) 8 cos 4 x 8 sin x cos 3 x \implies I = \frac{8 \cot\left(\frac{\pi}{4} + x\right)}{8\cos^4{x} -8\sin{x}\cos^3{x} } I = 8 cot ( π 4 + x ) 8 cos 3 x ( cos x sin x ) \implies I = \frac{8 \cot\left(\frac{\pi}{4} + x\right)}{8\cos^3{x} (\cos{x} -\sin{x})} I = 8 cot ( π 4 + x ) 8 2 cos 3 x ( cos x 2 sin x 2 ) \implies I = \frac{8 \cot\left(\frac{\pi}{4} + x\right)}{8\sqrt{2}\cos^3{x} \left(\frac{\cos{x}}{\sqrt{2}} -\frac{\sin{x}}{\sqrt{2}}\right)} I = 8 cot ( π 4 + x ) 8 2 cos 3 x cos ( π 4 + x ) \implies I = \frac{8 \cot\left(\frac{\pi}{4} + x\right)}{8\sqrt{2}\cos^3{x}\cos\left(\frac{\pi}{4} + x\right)} I = 1 2 cos 3 x sin ( π 4 + x ) \implies I = \frac{1}{\sqrt{2}\cos^3{x}\sin\left(\frac{\pi}{4} + x\right)} I = sec 3 x cos x + sin x \implies I = \frac{\sec^3{x}}{\cos{x}+\sin{x}} I = sec 4 x 1 + tan x \implies I = \frac{\sec^4{x}}{1+\tan{x}} I = ( 1 + tan 2 x ) sec 2 x 1 + tan x \implies I = \frac{(1+\tan^2{x})\sec^2{x}}{1+\tan{x}}

Now:

A = 0 π / 4 I d x = 0 π / 4 ( 1 + tan 2 x ) sec 2 x 1 + tan x d x A=\int_{0}^{\pi/4} I \ dx = \int_{0}^{\pi/4}\frac{(1+\tan^2{x})\sec^2{x}}{1+\tan{x}} \ dx

Taking z = tan x z = \tan{x} transforms the integral to:

A = 0 1 1 + z 2 1 + z d z = 0 1 1 1 + z d z + 0 1 z 2 1 + z d z A=\int_{0}^{1} \frac{1+z^2}{1+z} \ dz = \int_{0}^{1} \frac{1}{1+z} \ dz + \int_{0}^{1} \frac{z^2}{1+z} \ dz A = 0 1 1 1 + z d z + 0 1 z 2 1 + z d z = 0 1 1 1 + z d z + 0 1 z 2 1 + 1 1 + z d z A=\int_{0}^{1} \frac{1}{1+z} \ dz + \int_{0}^{1} \frac{z^2}{1+z} \ dz = \int_{0}^{1} \frac{1}{1+z} \ dz + \int_{0}^{1} \frac{z^2-1 + 1}{1+z} \ dz A = 2 0 1 1 1 + z d z + 0 1 ( z 1 ) d z A=2\int_{0}^{1} \frac{1}{1+z} \ dz + \int_{0}^{1} (z-1) \ dz

From this point, it is easy to show that the integral evaluates to:

A = 0 π / 4 8 cot ( π 4 + x ) cos 4 x + 4 sin 2 x sin 2 x 8 sin 2 x 4 sin 2 x + 7 d x = 2 ln 2 1 2 A=\int_{0}^{\pi/4} \frac{8 \cot\left(\frac{\pi}{4} + x\right)}{\cos{4x} + 4\sin^2{x}\sin{2x} - 8\sin^2{x} - 4\sin{2x} + 7} \ dx =\boxed{2\ln{2} - \frac{1}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...