Its Young's (excluded) not Old's (included)

A cone of circular cross section having base radius R R and height L L and mass M M is suspended from its base as shown in the figure. The material of the cone has young modulus Y Y . The acceleration due to gravity is g g . The elastic potential energy stored in the cone is E = m a g b L c d π e R f Y g E=\frac{m^{a}g^{b}L^{c}}{d\pi^{e}R^{f}Y^{g}}

Find a + b + c + d + e + f . a+b+c+d+e+f.


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ronak Agarwal
Jul 20, 2014

Young Young

We take an elemental disk at a distance x x from the bottom of thickness d x dx .

Radius of disk is given by r = x R L r=\dfrac { xR }{ L } .

So weight of the cone below the disk = m g 1 3 π ( x 2 R 2 L 2 ) x 1 3 π R 2 L = m g x 3 L 3 =mg\dfrac { \dfrac { 1 }{ 3 } \pi (\dfrac { { x }^{ 2 }R^{ 2 } }{ { L }^{ 2 } } )x }{ \dfrac { 1 }{ 3 } \pi { R }^{ 2 }L } =\dfrac { mg{ x }^{ 3 } }{ { L }^{ 3 } }

Strain= W e i g h t A Y = m g x Y π R 2 L \dfrac { Weight }{ AY }=\dfrac { mgx }{ Y\pi { R }^{ 2 }L } , A = A r e a o f d i s k = π x 2 R 2 L 2 A=Area \quad of \quad disk=\dfrac { \pi { x }^{ 2 }{ R }^{ 2 } }{ { L }^{ 2 } }

Let the total elastic potential energy be E E

d E = 1 2 Y ( S t r a i n ) 2 d V V = v o l u m e dE=\dfrac { 1 }{ 2 } Y{ (Strain) }^{ 2 }dV\quad V=volume

d V = π x 2 R 2 L 2 d x dV=\dfrac { \pi { x }^{ 2 }{ R }^{ 2 } }{ { L }^{ 2 } } dx

Putting the values we have d E = m 2 g 2 2 π Y R 2 L 4 x 4 d x dE=\dfrac { { m }^{ 2 }{ g }^{ 2 } }{ 2\pi Y{ R }^{ 2 }{ L }^{ 4 } } { x }^{ 4 }dx

E = m 2 g 2 2 π Y R 2 L 4 0 l x 4 d x = m 2 g 2 L 10 π R 2 Y E=\dfrac { { m }^{ 2 }{ g }^{ 2 } }{ 2\pi Y{ R }^{ 2 }{ L }^{ 4 } } \int _{ 0 }^{ l }{ { x }^{ 4 }dx }=\dfrac { { m }^{ 2 }{ g }^{ 2 }L }{ 10\pi { R }^{ 2 }Y }

So we have a = 2 , b = 2 , c = 1 , d = 10 , e = 1 , f = 2 a=2,b=2,c=1,d=10,e=1,f=2

Hence a + b + c + d + e + f = 18 \boxed { a+b+c+d+e+f=18 }

@Ronak Agarwal @Aniket Sanghi instead if sphere would have been in place of cone what would have been the answer. Pls tell

Ashutosh Sharma - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...