Its your last month coming 2017!

S = ( n 1 ) ( 1 + 1 2 ) ( n 2 ) + ( 1 + 1 2 + 1 3 ) ( n 3 ) + + ( 1 ) n 1 ( 1 + 1 2 + 1 3 + + 1 n ) ( n n ) S=\binom n1-\left(1+\frac 12\right)\binom n2+\left(1+\frac 12+\frac 13 \right)\binom n3+\cdots +(-1)^{n-1}\left(1+\frac 12+\frac 13 + \cdots +\frac 1n\right)\binom nn

Find the value of 1 S \dfrac 1S for n = 2017 n=2017 .

Notation: ( M N ) = M ! N ! ( M N ) ! \dbinom MN = \dfrac {M!}{N!(M-N)!} denotes the binomial coefficient .


The answer is 2017.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Nov 28, 2017

Since H n = 0 1 1 x n 1 x d x H_n \; = \; \int_0^1 \frac{1-x^n}{1-x}\,dx we see that S n = r = 1 n ( 1 ) r 1 ( n r ) H r = 0 1 1 1 x ( r = 1 n ( 1 ) r 1 ( n r ) ( 1 x r ) ) d x = 0 1 1 1 x ( ( 1 1 ) n 1 ( 1 x ) n + 1 ) d x = 0 1 ( 1 x ) n 1 d x = n 1 \begin{aligned} S_n & = \; \sum_{r=1}^n (-1)^{r-1} \binom{n}{r} H_r \; = \; \int_0^1 \frac{1}{1-x} \left(\sum_{r=1}^n (-1)^{r-1}\binom{n}{r}(1-x^r)\right)\,dx \\ & = \; -\int_0^1 \frac{1}{1-x}\big( (1-1)^n - 1 - (1-x)^n + 1\big)\,dx \;= \; \int_0^1 (1-x)^{n-1}\,dx \; = \; n^{-1} \end{aligned} making the answer S 2017 1 = 2017 S_{2017}^{-1} = \boxed{2017} .

We can also use binomial inversion theorem.

Aaron Jerry Ninan - 3 years, 5 months ago

Log in to reply

(+1). Can you add a solution

Md Zuhair - 3 years, 5 months ago

Can u please elaborate more? @Aaron Jerry Ninan

Rahil Sehgal - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...