I've seen it before - 8

f ( x ) = x 2 x k f(x)=x^2-x-k If one root of f ( x ) = 0 f(x)=0 is square of the other, then the value of k k is expressible in the form a ± b a\pm\sqrt{b} Then find the remainder when a 2014 a^{2014} is divided by b 2 b^2


Note

You can find more such problems here


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aneesh Kundu
Oct 28, 2014

Let α \alpha and α 2 \alpha^2 be the roots of f ( x ) = 0 f(x)=0 . So, we have f ( α ) = 0 f(\alpha)=0 α 2 α = k Eq.1 \alpha^2-\alpha=k\rightarrow\text{Eq.1} By Vieta's formulae, we get α 2 + α = 1 Eq.2 \alpha^2+\alpha=1\rightarrow\text{Eq.2} Eq.1+Eq.2 2 α 2 = 1 + k 2\alpha^2=1+k α 2 = 1 + k 2 Eq.3 \alpha^2=\dfrac{1+k}{2}\rightarrow\text{Eq.3} Eq.1-Eq.2 α = 1 k 2 Eq.4 \alpha=\dfrac{1-k}{2}\rightarrow\text{Eq.4} From Eq.3 & Eq.4, we get 1 + k 2 = ( 1 k 2 ) 2 \dfrac{1+k}{2}=\left(\dfrac{1-k}{2}\right)^2 Expanding the above expression, we get k 2 4 k 1 = 0 k^2-4k-1=0 k = 2 ± 5 \boxed{k=2\pm\sqrt{5}} Now we need to find 2 2014 m o d 25 2^{2014}\mod 25

We know that ϕ ( 25 ) = 20 \phi(25)=20 ,so by Euler-Fermat theorem, we have 2 20 1 m o d 125 2^{20}\equiv1\mod125 Raise both sides to 100th power 2 2000 1 m o d 125 C g . 1 2^{2000}\equiv1\mod125\rightarrow Cg.1 and also 2 7 128 3 m o d 25 2^7\equiv128\equiv 3\mod 25 2 14 9 m o d 25 C g . 2 2^{14}\equiv 9\mod 25 \rightarrow Cg.2 Multiplying both the congruences, we get 2 2014 9 m o d 25 \boxed{2^{2014}\equiv9\mod25}

Chew-Seong Cheong
Oct 25, 2014

The roots of f ( x ) = x 2 x k f(x) = x^2 - x -k are 1 ± 1 + 4 k 2 \dfrac {1 \pm \sqrt{1+4k}} {2} .

Assuming that 1 + 1 + 4 k 2 = ( 1 1 + 4 k 2 ) 2 \dfrac {1 + \sqrt{1+4k}} {2} = \left( \dfrac {1 - \sqrt{1+4k}} {2} \right)^2

1 + 1 + 4 k 2 = 1 2 1 + 4 k + 1 + 4 k 2 = 1 + 2 k 1 + 4 k 2 \Rightarrow \dfrac {1 + \sqrt{1+4k}} {2} = \dfrac {1 - 2\sqrt{1+4k} + 1 + 4k} {2} = \dfrac {1 + 2k - \sqrt{1+4k}} {2}

1 + 1 + 4 k = 1 + 2 k 1 + 4 k 1 + 4 k = k 1 + 4 k = k 2 \Rightarrow 1 + \sqrt{1+4k} = 1 + 2k - \sqrt{1+4k} \quad \Rightarrow \sqrt{1+4k} = k \quad \Rightarrow 1+4k = k^2

k 2 4 k 1 = 0 k = 4 ± 16 + 4 2 = 2 ± 5 a = 2 , b = 5 \Rightarrow k^2 - 4k -1 = 0 \quad \Rightarrow k = \dfrac {4 \pm \sqrt {16+4} } {2} = 2 \pm \sqrt{5} \quad \Rightarrow a = 2, \quad b =5

We need to find x x in:

2 2014 x ( m o d 25 ) 2 4 ( 1024 ) 201 ( m o d 25 ) 2 4 ( 1 ) 201 ( m o d 25 ) 2^{2014} \equiv x \pmod {25} \equiv 2^{4}(1024)^{201} \pmod {25} \equiv 2^{4}(-1)^{201} \pmod {25}

2 4 ( 1 ) ( m o d 25 ) 16 ( m o d 25 ) 9 ( m o d 25 ) \equiv 2^{4}(-1) \pmod {25} \equiv -16 \pmod {25} \equiv \boxed{9} \pmod {25}

nice solution. Can u help me out with this one

Aneesh Kundu - 6 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...