I've written the answer here

Geometry Level 4

The 9 elements of the set S = { 5 , 25 , 45 , , 165 } S= \{5,25,45, \ldots, 165 \} follows an arithmetic progression.

Evaluate k S tan ( k ) \displaystyle \sum_{k \in S} \tan(k^\circ) .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Jan 5, 2019

The sum, after rearranging, using the identity tan ( 180 ° x ) = tan x -\tan(180° - x) = \tan x , converting to radians, and expressing in sigma notation is

= tan 5 ° + tan 25 ° + tan 45 ° + tan 65 ° + tan 85 ° + tan 105 ° + tan 125 ° + tan 145 ° + tan 165 ° = \tan 5° + \tan 25° + \tan 45° + \tan 65° + \tan 85° + \tan 105° + \tan 125° + \tan 145° + \tan 165°

= tan 5 ° + tan 165 ° + tan 25 ° + tan 145 ° + tan 45 ° + tan 125 ° + tan 65 ° + tan 105 ° + tan 85 ° = \tan 5° + \tan 165° + \tan 25° + \tan 145° + \tan 45° + \tan 125° + \tan 65° + \tan 105° + \tan 85°

= tan 5 ° tan 15 ° + tan 25 ° tan 35 ° + tan 45 ° tan 55 ° + tan 65 ° tan 75 ° + tan 85 ° = \tan 5° - \tan 15° + \tan 25° - \tan 35° + \tan 45° - \tan 55° + \tan 65° - \tan 75° + \tan 85°

= tan π 36 tan 3 π 36 + tan 5 π 36 tan 7 π 36 + tan 9 π 36 tan 11 π 36 + tan 13 π 36 tan 15 π 36 + tan 17 π 36 = \tan \frac{\pi}{36} - \tan \frac{3\pi}{36} + \tan \frac{5\pi}{36} - \tan \frac{7\pi}{36} + \tan \frac{9\pi}{36} - \tan \frac{11\pi}{36} + \tan \frac{13\pi}{36} - \tan \frac{15\pi}{36} + \tan \frac{17\pi}{36}

= 0 8 ( 1 ) k tan ( 2 k + 1 ) π 36 = \displaystyle \sum_{0}^{8} (-1)^k \tan \frac{(2k + 1)\pi}{36}

From this website we find that 0 n 1 ( 1 ) k tan ( 2 k + 1 ) π 4 n = ( 1 ) n 1 n \displaystyle \sum_{0}^{n-1} (-1)^k \tan \frac{(2k + 1)\pi}{4n} = (-1)^{n - 1}n for all natural numbers n n .

In this case, n = 9 n = 9 , so the sum is ( 1 ) 9 1 9 = 9 (-1)^{9 - 1}9 = \boxed{9} .

The most crucial part is left unexplained.

Atomsky Jahid - 2 years, 5 months ago

Log in to reply

Hint: Notice that the tangent of 9 times the value of any of the elements in S S is 1. For example, tan ( 9 × 10 5 ) = 1 \tan(9\times 105^\circ) = 1 .

Hint 2: Express tan ( 3 x ) \tan(3x) in terms of tan ( x ) \tan(x) . Then express tan ( 9 x ) \tan(9x) in terms of tan ( x ) \tan(x) .

Pi Han Goh - 2 years, 5 months ago

Log in to reply

Interesting! So tan 3 x = 3 tan x tan 3 x 1 3 tan 2 x \tan 3x = \frac{3 \tan x - \tan^3 x}{1 - 3\tan^2 x} and tan 9 x = tan 9 x 36 tan 7 x + 126 tan 5 x 84 tan 3 x + 9 tan x 9 tan 8 x 84 tan 6 x + 126 tan 4 x 36 tan 2 x + 1 \tan 9x = \frac{\tan^9 x - 36\tan^7 x + 126\tan^5 x - 84\tan^3 x + 9\tan x}{9\tan^8 x - 84\tan^6 x + 126 \tan^4 x - 36 \tan^2 x + 1} . For tan 9 x = 1 \tan 9x = 1 , this solves to 1 = ( tan x 1 ) 9 1 = (\tan x - 1)^9 , so the 9 9 given tangents are the 9 9 roots of 1 1 offset by 1 1 each time which adds up to 9 9 .

David Vreken - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...