The 9 elements of the set S = { 5 , 2 5 , 4 5 , … , 1 6 5 } follows an arithmetic progression.
Evaluate k ∈ S ∑ tan ( k ∘ ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The most crucial part is left unexplained.
Log in to reply
Hint: Notice that the tangent of 9 times the value of any of the elements in S is 1. For example, tan ( 9 × 1 0 5 ∘ ) = 1 .
Hint 2: Express tan ( 3 x ) in terms of tan ( x ) . Then express tan ( 9 x ) in terms of tan ( x ) .
Log in to reply
Interesting! So tan 3 x = 1 − 3 tan 2 x 3 tan x − tan 3 x and tan 9 x = 9 tan 8 x − 8 4 tan 6 x + 1 2 6 tan 4 x − 3 6 tan 2 x + 1 tan 9 x − 3 6 tan 7 x + 1 2 6 tan 5 x − 8 4 tan 3 x + 9 tan x . For tan 9 x = 1 , this solves to 1 = ( tan x − 1 ) 9 , so the 9 given tangents are the 9 roots of 1 offset by 1 each time which adds up to 9 .
Problem Loading...
Note Loading...
Set Loading...
The sum, after rearranging, using the identity − tan ( 1 8 0 ° − x ) = tan x , converting to radians, and expressing in sigma notation is
= tan 5 ° + tan 2 5 ° + tan 4 5 ° + tan 6 5 ° + tan 8 5 ° + tan 1 0 5 ° + tan 1 2 5 ° + tan 1 4 5 ° + tan 1 6 5 °
= tan 5 ° + tan 1 6 5 ° + tan 2 5 ° + tan 1 4 5 ° + tan 4 5 ° + tan 1 2 5 ° + tan 6 5 ° + tan 1 0 5 ° + tan 8 5 °
= tan 5 ° − tan 1 5 ° + tan 2 5 ° − tan 3 5 ° + tan 4 5 ° − tan 5 5 ° + tan 6 5 ° − tan 7 5 ° + tan 8 5 °
= tan 3 6 π − tan 3 6 3 π + tan 3 6 5 π − tan 3 6 7 π + tan 3 6 9 π − tan 3 6 1 1 π + tan 3 6 1 3 π − tan 3 6 1 5 π + tan 3 6 1 7 π
= 0 ∑ 8 ( − 1 ) k tan 3 6 ( 2 k + 1 ) π
From this website we find that 0 ∑ n − 1 ( − 1 ) k tan 4 n ( 2 k + 1 ) π = ( − 1 ) n − 1 n for all natural numbers n .
In this case, n = 9 , so the sum is ( − 1 ) 9 − 1 9 = 9 .