Jack Bauer is back!

Geometry Level 4

If sin 24 ( π 24 ) + cos 24 ( π 24 ) = a + b 3 2 c \sin^{24} \left ( \frac {\pi}{24} \right ) + \cos^{24} \left ( \frac {\pi}{24} \right ) = \frac {a+b \sqrt3}{2^c } for positive integers a , b , c a,b,c such that c c is minimized, what is the value of c + 1 c+1 ?


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
May 8, 2014

By double angle formula, 1 2 = cos ( π 6 ) = 2 cos 2 ( π 12 ) 1 cos ( π 12 ) = 3 + 1 2 2 sin ( π 12 ) = 3 1 2 2 \frac {1}{2} = \cos \left ( \frac {\pi}{6} \right ) = 2 \cos^2 \left ( \frac {\pi}{12} \right ) - 1 \Rightarrow \cos \left ( \frac {\pi}{12} \right ) = \frac {\sqrt3 + 1}{2\sqrt2} \Rightarrow \sin \left ( \frac {\pi}{12} \right ) = \frac {\sqrt3 - 1}{2\sqrt2}

sin 8 ( π 24 ) + cos 8 ( π 24 ) \large \sin^{8} \left ( \frac {\pi}{24} \right ) + \cos^{8} \left ( \frac {\pi}{24} \right )

= ( sin 2 ( π 24 ) ) 4 + ( cos 2 ( π 24 ) ) 4 \large = \left ( \sin^2 \left ( \frac {\pi}{24} \right ) \right )^{4} + \left ( \cos^2 \left ( \frac {\pi}{24} \right ) \right )^{4}

= ( 1 cos ( π 12 ) 2 ) 4 + ( 1 + cos ( π 12 ) 2 ) 4 \large = \left ( \frac {1 - \cos \left (\frac {\pi}{12} \right) }{2} \right )^{4} + \left ( \frac {1 + \cos \left (\frac {\pi}{12} \right) }{2} \right )^{4}

= ( 1 1 + 3 2 2 2 ) 4 + ( 1 + 1 + 3 2 2 2 ) 4 \large = \left ( \frac {1 - \frac {1+\sqrt3}{2\sqrt2} }{2} \right )^{4} + \left ( \frac {1 + \frac {1+\sqrt3}{2\sqrt2} }{2} \right )^{4}

= 1 2 10 ( ( 2 2 ( 1 + 3 ) ) 4 + ( ( 2 2 + ( 1 + 3 ) ) 12 ) \large = \frac {1}{2^{10}} \cdot \left ( (2\sqrt2 - (1+\sqrt3))^{4} + ( (2\sqrt2 + (1+\sqrt3))^{12} \right )

= 1 2 9 ( ( 2 2 ) 4 + 6 ( 2 2 ) 2 ( 1 + 3 ) ) 2 + ( 1 + 3 ) ) 4 ) \large = \frac {1}{2^9} \cdot \left ( (2\sqrt2)^4 + 6 (2\sqrt2)^2 (1+\sqrt3))^{2} + (1+\sqrt3))^{4} \right )

= 71 + 28 3 2 7 \large = \frac {71 + 28 \sqrt3 }{2^7}

sin 24 ( π 24 ) + cos 24 ( π 24 ) = ( sin 8 ( π 24 ) + cos 8 ( π 24 ) ) 3 3 ( sin ( π 24 ) cos ( π 24 ) ) 16 ( sin 8 ( π 24 ) + cos 8 ( π 24 ) ) = ( 71 + 28 3 2 7 ) 3 3 2 8 ( 2 sin ( π 24 ) cos ( π 24 ) ) 8 ( 71 + 28 3 2 7 ) = ( 71 + 28 3 2 7 ) 3 3 2 8 ( sin ( π 12 ) ) 8 ( 71 + 28 3 2 7 ) = ( 71 + 28 3 2 7 ) 3 3 2 8 ( 3 1 2 2 ) 8 ( 71 + 28 3 2 7 ) = 2 6 ( 71 + 28 3 ) 3 3 ( 71 + 28 3 ) ( 3 1 ) 8 2 27 \begin{aligned} \sin^{24} \left ( \frac {\pi}{24} \right ) + \cos^{24} \left ( \frac {\pi}{24} \right ) & = & \left ( \sin^8 \left ( \frac {\pi}{24} \right ) + \cos^8 \left ( \frac {\pi}{24} \right ) \right )^3 - 3 \cdot \left ( \sin \left ( \frac {\pi}{24} \right ) \cos \left ( \frac {\pi}{24} \right ) \right )^{16} \left ( \sin^8 \left ( \frac {\pi}{24} \right ) + \cos^8 \left ( \frac {\pi}{24} \right ) \right ) \\ & = & \left ( \frac {71 + 28\sqrt3}{2^7} \right )^3 - \frac {3}{2^{8}} \left ( 2 \sin \left ( \frac {\pi}{24} \right ) \cos \left ( \frac {\pi}{24} \right ) \right )^{8} \left ( \frac {71 + 28\sqrt3}{2^7} \right ) \\ & = & \left ( \frac {71 + 28\sqrt3}{2^7} \right )^3 - \frac {3}{2^{8}} \left ( \sin \left ( \frac {\pi}{12} \right ) \right )^{8} \left ( \frac {71 + 28\sqrt3}{2^7} \right ) \\ & = & \left ( \frac {71 + 28\sqrt3}{2^7} \right )^3 - \frac {3}{2^{8}} \left ( \frac {\sqrt3 - 1}{2\sqrt2} \right )^{8} \left ( \frac {71 + 28\sqrt3}{2^7} \right ) \\ & = & \frac { 2^{6} (71 + 28\sqrt3)^3 - 3(71 + 28\sqrt3) (\sqrt3 - 1)^{8} }{2^{27}} \\ \end{aligned}

We want to expand ( 3 1 ) 8 ( \sqrt3 - 1)^{8} , note that 8 = 2 3 8 = 2^3 . Consider the binomial expansion ( x + y 3 ) 2 = ( x 2 + 3 y 2 ) + 3 ( 2 x y ) (x + y\sqrt3)^2 = (x^2 + 3y^2) + \sqrt3 (2xy)

Recurrence relation ( x n + 1 , y n + 1 ) = ( x n 2 + 3 y n 2 , 2 x n y n ) (x_{n+1}, y_{n+1} ) = (x_n^2 + 3y_n^2, 2x_n y_n) with ( x 0 , y 0 ) = ( 1 , 1 ) (x_0, y_0) = (-1,1) , then

( x 1 , y 1 ) = ( 4 , 2 ) , ( x 2 , y 2 ) = ( 28 , 16 ) , ( x 3 , y 3 ) = ( 1552 , 896 ) (x_1, y_1) = (4, -2), (x_2, y_2) = (28, -16), (x_3, y_3) = (1552, -896) .

Note that gcd ( x 4 , y 4 ) = 2 3 \text{gcd} (x_4,y_4) = 2^3

sin 24 ( π 24 ) + cos 24 ( π 24 ) = 2 6 ( 71 + 28 3 ) 3 3 ( 71 + 28 3 ) 2 4 ( 97 56 3 ) 2 27 = 2 2 ( 71 + 28 3 ) 3 3 ( 71 + 28 3 ) ( 97 56 3 ) 2 23 \begin{aligned} \sin^{24} \left ( \frac {\pi}{24} \right ) + \cos^{24} \left ( \frac {\pi}{24} \right ) & = & \frac { 2^{6} (71 + 28\sqrt3)^3 - 3(71 + 28\sqrt3) \cdot 2^4 ( 97 - 56\sqrt3) }{2^{27}} \\ & = & \frac { 2^{2} (71 + 28\sqrt3)^3 - 3(71 + 28\sqrt3) ( 97- 56\sqrt3) }{2^{23}} \\ \end{aligned}

Expansion of ( 71 + 28 3 ) ( 97 56 3 ) (71 + 28\sqrt3) ( 97- 56\sqrt3) shows that it doesn't have a factor of 2 2 . So the numerator is no longer divisible by 2 2 . Thus c c is minimized. Hence c = 23 c + 1 = 24 c = 23 \Rightarrow c+1= \boxed{24}

I was originally wondering what Jack Bauer has to do with this problem.

@Suyeon Khim Jack Bauer is BACK!!!

Calvin Lin Staff - 7 years, 1 month ago

Log in to reply

this was maybe to confuse us....

Max B - 7 years, 1 month ago

Log in to reply

The answer is 24.

Calvin Lin Staff - 7 years, 1 month ago

I guessed it :)

Mursalin Habib - 7 years, 1 month ago

Log in to reply

HOW LUCKY OF YOU.... =S

Pi Han Goh - 7 years, 1 month ago

Log in to reply

Same here! i might have been able to actually solve it but was curious what would happen if i put 24... :S

David Lee - 7 years, 1 month ago

There is an error in your calculations. Your expression for sin 24 ( π 24 ) + cos 24 ( π 24 ) \sin^{24} \left( \frac{\pi}{24} \right) + \cos^{24} \left( \frac{\pi}{24} \right) should be ( sin 8 ( π 24 ) + cos 8 ( π 24 ) ) 3 3 ( sin ( π 24 ) cos ( π 24 ) ) 8 ( sin 8 ( π 24 ) + cos 8 ( π 24 ) ) . \left( \sin^8 \left( \frac{\pi}{24} \right) + \cos^8 \left( \frac{\pi}{24} \right) \right)^3 - 3 \cdot \left( \sin \left( \frac{\pi}{24} \right) \cos \left( \frac{\pi}{24} \right) \right)^{\boxed{8}} \left( \sin^8 \left( \frac{\pi}{24} \right) + \cos^8 \left( \frac{\pi}{24} \right) \right).

When you work everything out, you should get sin 24 ( π 24 ) + cos 24 ( π 24 ) = 3428999 + 1960980 3 2 23 . \sin^{24} \left( \frac{\pi}{24} \right) + \cos^{24} \left( \frac{\pi}{24} \right) = \frac{3428999 + 1960980 \sqrt{3}}{2^{23}}.

Jon Haussmann - 7 years, 1 month ago

Log in to reply

WHOOPS, thanks! Fixed! That's what I get for solving it WHILE watching 24.

Pi Han Goh - 7 years, 1 month ago
Incredible Mind
Jan 4, 2015

Whoa!!!You all forgot EULER's great theorem if pi/24 = t then given expression becomes ( (e^it - e^-it)/2i)^24 + ( (e^it + e^-it)/2)^24

= (2^-24) ( (e^it - e^-it)^24 + (e^it + e^-it)^24 ) since i^24=1

using binomial expansion u will get this to be

{sum 0 to 12 of 24 C 2n e^i(24-2n)t} /2^23

sigma stuff is irrelavent to our Q which requires c(23) hence ANS is 24

How do you know that the numerator in the second last line is not divisible by 2?

Pi Han Goh - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...