Jae

Algebra Level 2

{ a b + c + d = 15 b c + a + d = 19 c d + a + b = 25 a d + b + c = 17 \large \begin{cases} ab+c+d=15 \\ bc+a+d=19 \\ cd+a+b=25 \\ ad+b+c=17 \end{cases}

Positives integers a a , b b , c c and d d satisfy the system of equation above. What are the values of a a , b b , c c and d d respectively?

12, 5, 3 and 7 2, 3, 4 and 5 2, 8, 4 and 10 1, 6, 4 and 5 1, 5, 4 and -6 5, 4, 3 and 2 3, 6, 9 and 11 7, 6, 8 and 10

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 19, 2018

Given that { a b + c + d = 15 . . . ( 1 ) b c + d + a = 19 . . . ( 2 ) c d + a + b = 25 . . . ( 3 ) d a + b + c = 17 . . . ( 4 ) \begin{cases} ab+c+d = 15 & ...(1) \\ bc+d+a = 19 & ...(2) \\ cd + a + b = 25 &...(3) \\ da + b + c = 17 & ...(4) \end{cases}

{ ( 2 ) ( 1 ) : ( b 1 ) ( c a ) = 4 ( 3 ) ( 4 ) : ( d 1 ) ( c a ) = 8 d 1 b 1 = 2 d = 2 b 1 \begin{cases} (2)-(1): & (b-1)(c-a) = 4 \\ (3)-(4): & (d-1)(c-a) = 8 \end{cases} \implies \dfrac {d-1}{b-1} = 2 \implies d = 2b-1

{ ( 3 ) ( 2 ) : ( c 1 ) ( d b ) = 6 ( 4 ) ( 1 ) : ( a 1 ) ( d b ) = 2 c 1 a 1 = 3 c = 3 a 2 \begin{cases} (3)-(2): & (c-1)(d-b) = 6 \\ (4)-(1): & (a-1)(d-b) = 2 \end{cases} \implies \dfrac {c-1}{a-1} = 3 \implies c = 3a-2

From equation 2:

b c + d + a = 19 b ( 3 a 2 ) + 2 b 1 + a = 19 3 a b + a = 20 b = 20 a 3 a . . . ( 2 a ) \begin{aligned} bc+d+a & = 19 \\ b(3a-2)+2b-1+a & = 19 \\ 3ab + a & = 20 \\ \implies b & = \frac {20-a}{3a} &...(2a) \end{aligned}

From equation 4:

d a + b + c = 17 ( 2 b 1 ) a + b + 3 a 2 = 17 2 a b + 2 a + b = 19 ( 2 a + 1 ) b + 2 a = 19 ( 2 ) : b = 20 a 3 a ( 2 a + 1 ) × 20 a 3 a + 2 a = 19 ( 2 a + 1 ) ( 20 a ) + 6 a 2 = 57 a 2 a 2 + 39 a + 20 + 6 a 2 = 57 a 4 a 2 18 a + 20 = 0 2 a 2 9 a + 10 = 0 ( 2 a 5 ) ( a 2 ) = 0 a = 2 Since a N b = 20 a 3 a = 3 c = 3 a 2 = 4 d = 2 b 1 = 5 \begin{aligned} da + b + c & = 17 \\ (2b-1)a + b + 3a-2 & = 17 \\ 2ab + 2a + b & = 19 \\ (2a+1){\color{#3D99F6}b} + 2a & = 19 & \small \color{#3D99F6} (2): \ b = \frac {20-a}{3a} \\ (2a+1)\times \frac {20-a}{3a} + 2a & = 19 \\ (2a+1)(20-a) + 6a^2 & = 57a \\ -2a^2 + 39a + 20 + 6a^2 & = 57a \\ 4a^2 - 18a + 20 & = 0 \\ 2a^2 - 9a + 10 & = 0 \\ (2a-5)(a-2) & = 0 \\ \implies a & = 2 & \small \color{#3D99F6} \text{Since } a \in \mathbb N \\ b & = \frac {20-a}{3a} = 3 \\ c & = 3a-2 = 4 \\ d & = 2b-1 = 5 \end{aligned}

Therefore, a a , b b , c c and d d are 2, 3, 4 and 5 respectively.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...