JEE 2007

Calculus Level 3

Let F ( x ) = f ( x ) + f ( 1 x ) F(x)=f(x)+f \left(\frac{1}{x}\right) , where f ( x ) = 1 x log t 1 + t d t f(x)=\int_1^{x}\frac{\log t}{1+t}dt .

Then F ( e ) = ? F(e)=?

1 2 \frac{1}{2} 0 1 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 17, 2019

f ( x ) = 1 x log t 1 + t d t Let t = e u d t = e u d u = 0 log x u e u 1 + e u d u f ( 1 x ) = 0 log 1 x u e u 1 + e u d u = 0 log x u e u 1 + e u d u Let u = v d u = d v = 0 log x v e v 1 + e v d v Multiply up and down by e v = 0 log x v e v + 1 d v \begin{aligned} f(x) & = \int_1^x \frac {\log t}{1+t} dt & \small \color{#3D99F6} \text{Let }t = e^u \implies dt = e^u du \\ & = \int_0^{\log x} \frac {ue^u}{1+e^u} du \\ \implies f\left(\frac 1x\right) & = \int_0^{\color{#3D99F6} \log \frac 1x} \frac {ue^u}{1+e^u} du \\ & = \int_0^{\color{#3D99F6}-\log x} \frac {ue^u}{1+e^u} du & \small \color{#3D99F6} \text{Let }u=-v \implies du = - dv \\ & = \int_0^{\log x} \frac {ve^{-v}}{1+e^{-v}} dv & \small \color{#3D99F6} \text{Multiply up and down by }e^v \\ & = \int_0^{\log x} \frac {v}{e^v + 1} dv \end{aligned}

Therefore,

F ( x ) = f ( x ) + f ( 1 x ) = 0 log x u e u 1 + e u d u + 0 log x u 1 + e u d u = 0 log x u d u = log 2 x 2 F ( e ) = log 2 e 2 = 1 2 \begin{aligned} F(x) & = f(x) + f\left(\frac 1x\right) \\ & = \int_0^{\log x} \frac {ue^u}{1+e^u} du + \int_0^{\log x} \frac u{1+e^u} du \\ & = \int_0^{\log x} u \ du = \frac {\log^2 x}2 \\ \implies F(e) & = \frac {\log^2 e}2 = \boxed{\dfrac 12} \end{aligned}

Observe that the substitution t = 1 / u t = 1/u leads us to

f ( 1 x ) = 1 1 x log t t + 1 d t = 1 x log ( 1 / u ) 1 u + 1 ( 1 u 2 ) d u = u t 1 x log t t ( t + 1 ) d t , f \left( \frac{1}{x} \right) = \int_1^{\frac{1}{x}} \frac{\log t}{t+1} dt = \int_1^x \frac{\log \left( 1/u \right)}{\frac{1}{u} + 1} \left( \frac{-1}{u^2} \right ) du \overset{u \rightarrow t}{=} \int_1^{x} \frac{\log t}{t(t+1)} dt,

and therefore

F ( x ) = f ( x ) + f ( 1 x ) = 1 x ( log t ( t + 1 ) + log t t ( t + 1 ) ) d t = 1 x log t t d t . F(x) = f(x) + f\left(\frac{1}{x}\right) = \int_1^{x} \left(\frac{\log t}{(t+1)} + \frac{\log t}{t(t+1)} \right )dt = \int_1^x \frac{\log t}{t} dt.

Here integration by parts will show us that

F ( x ) = log 2 x 2 , F(x) = \frac{\log^2 x}{2},

and therefore F ( e ) = 1 / 2. F(e) = 1/2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...