JEE Advance Conics

Geometry Level 5

From a variable point P ( t 2 , 2 t ) , 1 t 3 P~(t^2,2t),~1\leq t\leq 3 on the parabola y 2 = 4 x y^{2}=4x , perpendicular P M PM is drawn to the tangent at the vertex. Now, from the mid point Q Q of P M PM , perpendicular Q L QL is drawn to the focal chord through P P . Find the sum of length of focal chord such that Q L QL is maximum and maximum length of Q L QL


The answer is 13.78.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Shekhawat
Apr 16, 2015

Q ( t 2 2 , 2 t ) Q(\cfrac { { t }^{ 2 } }{ 2 } ,2t) F C : y = 2 t t 2 1 ( x 1 ) FC:\quad y=\cfrac { 2t }{ { t }^{ 2 }-1 } (x-1) Q L : L = t 3 4 t 2 + ( t 2 1 ) 2 QL:\quad L=\left| \cfrac { { t }^{ 3 } }{ \sqrt { 4{ t }^{ 2 }+{ ({ t }^{ 2 }-1) }^{ 2 } } } \right| { L 2 = 1 2 t 4 + 1 t 2 + 1 t 6 } \left\{ \because { L }^{ 2 }=\left| \cfrac { 1 }{ \cfrac { 2 }{ { t }^{ 4 } } +\cfrac { 1 }{ { t }^{ 2 } } +\cfrac { 1 }{ { t }^{ 6 } } } \right| \right\} L e s t e s \because \quad L\uparrow es\Rightarrow t\uparrow es Q L = m a x { a t t = 3 L m a x = 27 10 QL=max\{ at\quad t=3\ \ \ { L }_{ max }=\cfrac { 27 }{ 10 }

Now using standard formula of focal length of chord ... which is essential for JEE aspect for quick calculation's , Hence :

L F C = 4 a csc 2 θ { L }_{ FC }=4a\csc ^{ 2 }{ \theta } where angle θ \theta is angle made by FC with +ve x-axis ,

Note :: Here a = 1 a=1 . and P ( 9 , 6 ) P(9,6) & S ( 1 , 0 ) S(1,0) hence

tan θ = 3 4 \tan { \theta } =\cfrac { 3 }{ 4 }

L F C = 100 9 { L }_{ FC }=\cfrac { 100 }{ 9 } \quad

Q L m a x + L F C = 27 10 + 100 9 \boxed { { QL }_{ max }+{ L }_{ FC }=\cfrac { 27 }{ 10 } +\cfrac { 100 }{ 9 } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...