JEE-Advanced 2015 (1/40)

Geometry Level 4

5 4 cos 2 2 x + cos 4 x + sin 4 x + cos 6 x + sin 6 x = 2 \large \frac{5}{4} \cos^2 2x+\cos^4 x+\sin^4 x+\cos^6 x+\sin^6 x=2

If x x is a real number that satisfy the equation above, find the number of distinct solution(s) of x x in the interval [ 0 , 2 π ] [0,2\pi] .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohit Ner
Jun 16, 2015

5 4 cos 2 2 x + cos 4 x + sin 4 x + cos 6 x + sin 6 x = 5 4 cos 2 2 x + 1 2 sin 2 x cos 2 x + cos 4 x + sin 4 x sin 2 x cos 2 x = 5 4 cos 2 2 x + 1 1 2 sin 2 2 x + 1 2 sin 2 x cos 2 x 1 4 sin 2 2 x = 2 + 5 4 cos 2 2 x 1 2 sin 2 2 x 1 2 sin 2 2 x 1 4 sin 2 2 x = 2 + 5 4 cos 2 2 x 5 4 sin 2 2 x = 2 + 5 4 cos 4 x = 2 cos 4 x = 0 \frac{5}{4} \cos^2 2x+\cos^4 x+\sin^4 x+\cos^6 x+\sin^6 x \\ =\frac { 5 }{ 4 } \cos ^{ 2 }{ 2x } +1-2\sin ^{ 2 }{ x } \cos ^{ 2 }{ x } +\cos ^{ 4 }{ x } +\sin ^{ 4 }{ x } -\sin ^{ 2 }{ x } \cos ^{ 2 }{ x } \\ =\frac { 5 }{ 4 } \cos ^{ 2 }{ 2x } +1-\frac { 1 }{ 2 } \sin ^{ 2 }{ 2x } +1-2\sin ^{ 2 }{ x } \cos ^{ 2 }{ x } -\frac { 1 }{ 4 } \sin ^{ 2 }{ 2x } \\ =2+\frac { 5 }{ 4 } \cos ^{ 2 }{ 2x } -\frac { 1 }{ 2 } \sin ^{ 2 }{ 2x } -\frac { 1 }{ 2 } \sin ^{ 2 }{ 2x } -\frac { 1 }{ 4 } \sin ^{ 2 }{ 2x } \\ =2+\frac { 5 }{ 4 } \cos ^{ 2 }{ 2x } -\frac { 5 }{ 4 } \sin ^{ 2 }{ 2x } \\ =2+\frac { 5 }{ 4 } \cos { 4x } =2 \\ \Rightarrow \cos { 4x } =0

For the domain [ 0 , 2 π ] \left[ 0,2\pi \right] , the function y = cos 4 x y=\cos { 4x } cuts the x x axis at 8 points.

Hence the number of distinct solutions = 8 \Huge\color{#3D99F6}{=\boxed{8}}

Moderator note:

Can you solve this without graphing?

cos ( 4 x ) = 0 \cos(4x)=0 2 cos 2 ( 2 x ) 1 2\cos^2(2x)-1 cos 2 ( 2 x ) = 1 2 \cos^2(2x)=\frac12 ( 2 cos 2 x 1 ) 2 = 1 2 (2\cos^2x-1)^2=\frac12 cos 4 x cos 2 x = 1 8 \cos^4x-\cos^2x=-\frac18 Let cos 2 x = x \cos^2x=x . Then: x 2 x + 1 8 = 0 x^2-x+\frac18=0 x = 1 2 1 2 2 x=\frac12-\frac1{2\sqrt{2}} and x = 1 2 + 1 2 2 x=\frac12+\frac1{2\sqrt{2}} First case, cos 2 x = 1 2 1 2 2 \cos^2x=\frac12-\frac1{2\sqrt{2}} cos x = 1 2 1 2 2 \cos x=\sqrt{\frac12-\frac1{2\sqrt{2}}} So x = 2 n π ± cos 1 ( ± 1 2 1 2 2 ) x=2n\pi\pm\cos^{-1}(\pm\sqrt{\frac12-\frac1{2\sqrt{2}}}) So in all, 4 4 solutions and similarly for the second case 4 4 solutions.

Aditya Agarwal - 5 years, 9 months ago

Cos 4x=0 x=(2n-1)(pi/2) Put n=1 to 8 so 8 solutions

Aqid Khatkhatay - 4 years, 5 months ago

Substitute \cos{4x}=1- 2\sin^2 {2x} and you will get

\sin^2 {2x} =\frac{1}{10}

Where 2x is in interval [0 , 4\pi] which we know will happen 8 times. Simple

Anurag Pandey - 4 years, 2 months ago

Perfect Solution! . used exactly the same approach

Prakhar Bindal - 5 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...