JEE Advanced 2017 Power

Calculus Level 4

Let f : R ( 0 , 1 ) f: \mathbb {R \to (0,1)} be a continuos function. Then, which of the following function(s) has(have) the value zero at some point in the interval ( 0 , 1 ) (0,1) ?

A. x 9 f ( x ) x^{9}-f(x)

B. f ( x ) + 0 π 2 f ( t ) sin ( t ) d t \displaystyle f(x)+\int_{0}^{\frac{\pi}{2}}f(t)\sin(t) \ dt

C. x 0 π 2 x f ( t ) cos ( t ) d t \displaystyle x-\int_{0}^{\frac{\pi}{2}-x}f(t)\cos(t) \ dt

D. e x 0 x f ( t ) sin ( t ) d t \displaystyle e^{x}-\int_{0}^{x}f(t)\sin(t) \ dt

A , C A,C A , C , B A,C,B B , D B,D A , C , D A,C,D A A A , B , C , D A,B,C,D

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aman Rajput
Oct 20, 2017

i took f(x)=sinx

Md Zuhair - 2 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...