JEE advanced type

Calculus Level 4

If I = 1 2 ( cot 1 x 1 ) 2 d x \displaystyle I = \int_1^2 \left( \cot^{-1} \sqrt{x-1} \right)^2 \, dx , find the value of π 2 + 8 I 8 ln 2 π . \dfrac { { \pi }^{ 2 }+8I-8\ln { 2 } }{ \pi }.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 25, 2016

Let cot 1 ( x 1 ) = tan 1 ( 1 x 1 ) = θ \cot^{-1} \left(\sqrt{x-1}\right) = \tan^{-1} \left( \dfrac{1}{\sqrt{x-1}} \right) = \theta .

tan θ = 1 x 1 sec 2 θ d θ = 1 2 ( x 1 ) 3 d x = tan 3 θ 2 d x d x = 2 cos θ sin 3 θ d θ \begin{aligned} \Rightarrow \tan \theta & = \frac{1}{\sqrt{x-1}} \\ \sec^2 \theta \space d\theta & = -\frac{1}{2(\sqrt{x-1})^3} \space dx = -\frac{\tan^3 \theta}{2} \space dx \\ \Rightarrow dx & = -\frac{2 \cos \theta}{\sin^3 \theta} \space d \theta \end{aligned}

Then, we have:

I = 1 2 ( cot 1 ( x 1 ) ) 2 d x = 2 π 4 π 2 θ 2 cos θ sin 3 θ d θ By integration by parts: u = θ 2 , d v = cos θ sin 3 θ d θ = 2 [ θ 2 2 sin 2 θ ] π 4 π 2 + 2 π 4 π 2 θ sin 2 θ d θ u = θ , d v = d θ sin 2 θ = π 2 8 + 2 [ θ cot θ ] π 4 π 2 + 2 π 4 π 2 cot θ d θ = π 2 8 + π 2 + 2 [ ln ( sin θ ) ] π 4 π 2 = π 2 8 + π 2 + ln 2 \begin{aligned} I & = \int_1^2 \left( \cot^{-1} \left(\sqrt{x-1}\right) \right)^2 dx \\ & = 2 \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{\color{#D61F06}{\theta^2} \color{#3D99F6}{\cos \theta}}{\color{#3D99F6}{\sin^3 \theta}} \color{#3D99F6}{\space d \theta} \quad \quad \small \color{#3D99F6}{\text{By integration by parts: }} \color{#D61F06}{u = \theta^2}, \space \color{#3D99F6}{dv = \frac{\cos \theta}{\sin^3 \theta} \space d \theta } \\ & = 2\left[-\frac{\theta^2}{2\sin^2 \theta} \right]_\frac{\pi}{4}^\frac{\pi}{2} + 2 \int_\frac{\pi}{4}^\frac{\pi}{2} \frac{\color{#D61F06}{\theta}}{\color{#3D99F6}{\sin^2 \theta}} \color{#3D99F6}{\space d \theta} \quad \quad \small \color{#D61F06}{u = \theta}, \space \color{#3D99F6}{dv = \frac{d \theta}{\sin^2 \theta}} \\ & = - \frac{\pi^2}{8} + 2 \left[-\theta \cot \theta \right]_\frac{\pi}{4}^\frac{\pi}{2} + 2 \int_\frac{\pi}{4}^\frac{\pi}{2} \cot \theta \space d \theta \\ & = - \frac{\pi^2}{8} + \frac{\pi}{2} + 2 \left[\ln (\sin \theta)\right]_\frac{\pi}{4}^\frac{\pi}{2} \\ & = - \frac{\pi^2}{8} + \frac{\pi}{2} + \ln 2 \end{aligned}

Therefore,

π 2 + 8 I 8 ln 2 π = π 2 + 8 ( π 2 8 + π 2 + ln 2 ) 8 ln 2 π = 4 \begin{aligned} \Rightarrow \frac{\pi^2+8I-8\ln 2}{\pi} & = \frac{\pi^2 + 8 \left( - \frac{\pi^2}{8} + \frac{\pi}{2} + \ln 2\right) -8\ln 2}{\pi} \\ & = \boxed{4} \end{aligned}

Harikrishna Nair
Nov 17, 2015

I= 1 2 ( a r c c o t s q r t ( x 1 ) ) 2 \int _{ 1 }^{ 2 }{ ({ arccot ^{ }{ sqrt {( x-1) } ) } }^{ 2 } } Put x-1 = t 2 { t }^{ 2 } I = 0 1 t × ( a r c c o t t ) 2 d t I=\int _{ 0 }^{ 1 }{ t\times ({ arccot ^{ }{ t) } }^{ 2 }dt } => dx=2tdt
Using integration by parts we can choose t as the first function and arccot(t) as the second function. You will get the final answer as π 2 8 + π 2 + ln 2 -\frac { { \pi }^{ 2 } }{ 8 } +\frac { \pi }{ 2 } +\ln { 2 } . Then by solving the fraction and rearranging the terms you will get the answer as 4. Please tell me if anyone needs the complete solution.

Is there any shorter method?

bhavay kukreja - 5 years, 6 months ago

Log in to reply

Personally I don't prefer integration by parts. But when you get t*cot^-1(t) integration by parts will give you an answer in 3 steps. I think that using this method we can solve the question in 3 minutes. I'll let you know if I get a shorter method.

Harikrishna Nair - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...