Logarithmic Integration!

Calculus Level 4

1 e ( ln x 1 ( ln x ) 2 + 1 ) 2 d x = ? \displaystyle \int _1^e \left( \dfrac{\ln {x}-1}{(\ln{x})^{2}+1} \right)^{2}\text{d}x = \ ?


The answer is 0.3591.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Apr 11, 2015

Put l n x = t lnx=t limits now become 0 0 for x = 1 x=1 and 1 1 for x = e x=e

e t = x e^{t}=x

e t . d t = d x e^{t}.dt=dx

by substituting the value value, we get

0 1 e t ( ( t 1 ) 2 ( t 2 + 1 ) 2 ) . d t \displaystyle \int^{1}_{0} e^{t} (\frac{(t-1)^2}{(t^2+1)^2}).dt

0 1 e t ( t 2 2 t + 1 ( t 2 + 1 ) 2 ) . d t \displaystyle \int^{1}_{0} e^{t} (\frac{t^2-2t+1}{(t^2+1)^2}).dt

0 1 e t ( 1 t 2 + 1 2 t ( t 2 + 1 ) 2 ) . d t \displaystyle \int^{1}_{0} e^{t} (\frac{1}{t^2+1}-\frac{2t}{(t^2+1)^2}).dt

As per general property e x ( f ( x ) + f ( x ) ) . d x = e x f ( x ) + c \displaystyle \int e^{x}(f(x)+f^{\prime}(x)).dx=e^{x}f(x)+c

1 t 2 + 1 i s f ( t ) \frac{1}{t^2+1}~is ~f(t) and 2 t ( t 2 + 1 ) 2 i s f ( t ) \frac{-2t}{(t^2+1)^2}~is~f^{\prime}(t)

hence the result of integral is e t t 2 + 1 \large{\frac{e^{t}}{t^2+1}}

On applying limits

e 2 1 \frac{e}{2}-1

=> 0.3591 \boxed{0.3591}

Moderator note:

Nicely done! The property e x ( f ( x ) + f ( x ) ) . d x = e x f ( x ) + c \displaystyle \int e^{x}(f(x)+f^{\prime}(x)).dx=e^{x}f(x)+c is very underrated and underutilized for solving integrals.

Nicely done! The property is indeed brilliantly used.

Kartik Sharma - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...