P Q R = ∫ 0 1 1 − x x ln ( 1 − x x ) d x = ∫ 0 P / 2 ln ( 1 + α cos 2 ( x ) ) d x = ∫ 0 8 e Q / P d α
Rick is stranded and finds a vehicle whose speed is R km/h.
How many km can Rick travel in 3 hours?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
P = ∫ 0 1 1 − x x ln ( 1 − x x ) d x = ∫ 0 2 π 4 sin 2 u ln ( tan u ) d u = − 4 cos u sin u ln ( tan u ) ∣ ∣ ∣ ∣ 0 2 π + 4 ∫ 0 ∞ ( cos 2 u ln ( tan u ) + tan u cos u sin u sec 2 u ) d u = 0 + 4 ∫ 0 2 π ( ( 1 − sin 2 u ) ln ( tan u ) + 1 ) d u = 4 ∫ 0 2 π ln ( tan u ) d u − 4 ∫ 0 2 π sin 2 u ln ( tan u ) + 4 ∫ 0 2 π 1 d u = 2 ∫ 0 2 π ( ln ( tan u ) + ln ( cot u ) ) d u − P + 2 π = 2 ∫ 0 2 π ( ln ( tan u ) − ln ( tan u ) ) d u − P + 2 π = π Let x = sin 2 u ⟹ d x = 2 sin u cos u By integration by parts By reflection: ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x
Q ( α ) ∂ α ∂ Q ( α ) = ∫ 0 2 π ln ( 1 + α cos 2 x ) d x = ∫ 0 2 π 1 + α cos 2 x cos 2 x d x = ∫ 0 2 π sec 2 x + α 1 d x = ∫ 0 2 π tan 2 x + 1 + α 1 d x = ∫ 0 ∞ ( t 2 + 1 + α ) ( t 2 + 1 ) 1 d t = α 1 ∫ 0 ∞ ( t 2 + 1 1 − t 2 + 1 + α 1 ) d t = 2 ( α + 1 + α + 1 ) π Let t = tan x ⟹ d t = sec 2 x d x
⟹ Q ( α ) = ∫ 2 ( α + 1 + α + 1 ) π d α = ∫ v + 1 π d v = π ln ( α + 1 + 1 ) + C = π ln ( 2 α + 1 + 1 ) Let v 2 = α + 1 ⟹ 2 v d v = d α Sinc Q ( 0 ) = 0 ⟹ C = − π l n 2
R = ∫ 0 8 exp ⎝ ⎛ π π ln ( 2 α + 1 + 1 ) ⎠ ⎞ d α = ∫ 0 8 2 α + 1 + 1 d α = 3 ( α + 1 ) 2 3 + 2 α ∣ ∣ ∣ ∣ 0 8 = 3 3 8
Therefore 3 R = 3 8 .
Problem Loading...
Note Loading...
Set Loading...
ANSWER:
P = π
Q = π ln ( 2 α + 1 + 1 )
R = 38/3
3R = 38
SOLUTION:
P:
Proof that:
∫
0
∞
1
+
t
2
l
n
t
d
t
=
0
Q:
R = ∫ 0 8 e ln ( 2 α + 1 + 1 ) d α
R = ∫ 0 8 ( 2 α + 1 + 1 ) d α
R = 3 3 8
3 R = 3 8