How far can Rick go?

Calculus Level 5

P = 0 1 x 1 x ln ( x 1 x ) d x Q = 0 P / 2 ln ( 1 + α cos 2 ( x ) ) d x R = 0 8 e Q / P d α \begin{aligned} P & = \int_{0}^{1} \sqrt{\dfrac{x}{1-x}} \ln{ \left(\dfrac{x}{1-x}\right)}\mathrm{d}x \\ Q & = \int_{0}^{P/2} \ln{ \left(1+\alpha\cos^2(x)\right)}\mathrm{d}x \\ R & = \int_{0}^{8} e^{Q/P}\mathrm{d}\alpha \end{aligned}

Rick is stranded and finds a vehicle whose speed is R km/h.

How many km can Rick travel in 3 3 hours?

39 37 38 36

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sid Patak
Jun 7, 2020

ANSWER:

P = π \pi

Q = π ln ( α + 1 + 1 2 ) \pi \ln{ \left(\dfrac{\sqrt{\alpha+1}+1}{2}\right)}

R = 38/3

3R = 38


SOLUTION:

P: Proof that: 0 l n t 1 + t 2 d t = 0 \int_{0}^{\infty} \dfrac{lnt}{1+t^2}\mathrm{d}t = 0

Q:

R = 0 8 e ln ( α + 1 + 1 2 ) d α R = \int_{0}^{8} e^{ \ln{ \left(\dfrac{\sqrt{\alpha+1}+1}{2}\right)} }\mathrm{d}\alpha

R = 0 8 ( α + 1 + 1 2 ) d α R = \int_{0}^{8} \left(\dfrac{\sqrt{\alpha+1}+1}{2}\right)\mathrm{d}\alpha

R = 38 3 R = \dfrac{38}{3}

3 R = 38 3R = 38

P = 0 1 x 1 x ln ( x 1 x ) d x Let x = sin 2 u d x = 2 sin u cos u = 0 π 2 4 sin 2 u ln ( tan u ) d u By integration by parts = 4 cos u sin u ln ( tan u ) 0 π 2 + 4 0 ( cos 2 u ln ( tan u ) + cos u sin u sec 2 u tan u ) d u = 0 + 4 0 π 2 ( ( 1 sin 2 u ) ln ( tan u ) + 1 ) d u = 4 0 π 2 ln ( tan u ) d u 4 0 π 2 sin 2 u ln ( tan u ) + 4 0 π 2 1 d u By reflection: a b f ( x ) d x = a b f ( a + b x ) d x = 2 0 π 2 ( ln ( tan u ) + ln ( cot u ) ) d u P + 2 π = 2 0 π 2 ( ln ( tan u ) ln ( tan u ) ) d u P + 2 π = π \begin{aligned} P & = \int_0^1 \sqrt{\frac x{1-x}} \ln \left(\frac x{1-x}\right) dx & \small \blue{\text{Let }x = \sin^2 u \implies dx = 2\sin u \cos u} \\ & = \int_0^\frac \pi 2 4 \sin^2 u \ln (\tan u) \ du & \small \blue{\text{By integration by parts}} \\ & = -4\cos u \sin u \ln (\tan u) \bigg|_0^\frac \pi 2 + 4\int_0^\infty \left(\cos^2 u \ln (\tan u) + \frac {\cos u \sin u \sec^2 u}{\tan u} \right) du \\ & = 0 + 4\int_0^\frac \pi 2 \left((1-\sin^2 u) \ln (\tan u) + 1 \right) du \\ & = \blue{4 \int_0^\frac \pi 2 \ln(\tan u)\ du} - 4 \int_0^\frac \pi 2 \sin^2 u \ln (\tan u) + 4\int_0^\frac \pi 2 1 \ du & \small \blue{\text{By reflection: }\int_a^b f(x)\ dx = \int_a^b f(a+b-x)\ dx} \\ & = \blue{2 \int_0^\frac \pi 2 (\ln(\tan u)+ \ln(\cot u) )\ du} - P + 2\pi \\ & = 2 \int_0^\frac \pi 2 (\cancel{\ln(\tan u)} - \cancel{\ln(\tan u)})\ du - P + 2\pi \\ & = \pi \end{aligned}

Q ( α ) = 0 π 2 ln ( 1 + α cos 2 x ) d x Q ( α ) α = 0 π 2 cos 2 x 1 + α cos 2 x d x = 0 π 2 1 sec 2 x + α d x = 0 π 2 1 tan 2 x + 1 + α d x Let t = tan x d t = sec 2 x d x = 0 1 ( t 2 + 1 + α ) ( t 2 + 1 ) d t = 1 α 0 ( 1 t 2 + 1 1 t 2 + 1 + α ) d t = π 2 ( α + 1 + α + 1 ) \begin{aligned} Q(\blue \alpha) & = \int_0^\frac \pi 2 \ln \left(1+\blue \alpha \cos^2 x \right) dx \\ \frac {\partial Q(\alpha)}{\partial \alpha} & = \int_0^\frac \pi 2 \frac {\cos^2 x}{1+ \alpha \cos^2 x} dx = \int_0^\frac \pi 2 \frac 1{\sec^2 x + \alpha} dx = \int_0^\frac \pi 2 \frac 1{\tan^2 x + 1 + \alpha} dx & \small \blue{\text{Let } t = \tan x \implies dt = \sec^2 x \ dx} \\ & = \int_0^\infty \frac 1{(t^2+1+\alpha)(t^2+1)} dt = \frac 1\alpha \int_0^\infty \left(\frac 1{t^2+1} - \frac 1{t^2+1+\alpha}\right) dt \\ & = \frac \pi {2(\alpha+1 + \sqrt{\alpha+1})} \end{aligned}

Q ( α ) = π 2 ( α + 1 + α + 1 ) d α = π v + 1 d v Let v 2 = α + 1 2 v d v = d α = π ln ( α + 1 + 1 ) + C Sinc Q ( 0 ) = 0 C = π l n 2 = π ln ( α + 1 + 1 2 ) \begin{aligned} \implies Q(\alpha) & = \int \frac \pi {2(\alpha+1 + \sqrt{\alpha+1})} d \alpha = \int \frac \pi{v+1} dv & \small \blue{\text{Let } v^2 =\alpha+1 \implies 2v\ dv = d\alpha} \\ & = \pi \ln (\sqrt{\alpha+1}+1) + C & \small \blue{\text{Sinc }Q(0) = 0 \implies C = - \pi ln 2} \\ & = \pi \ln \left(\frac {\sqrt{\alpha+1}+1}2 \right) \end{aligned}

R = 0 8 exp ( π ln ( α + 1 + 1 2 ) π ) d α = 0 8 α + 1 + 1 2 d α = ( α + 1 ) 3 2 3 + α 2 0 8 = 38 3 \begin{aligned} R & = \int_0^8 \exp \left(\frac {\pi\ln \left(\frac {\sqrt{\alpha+1}+1}2 \right)}\pi \right) d\alpha = \int_0^8 \frac {\sqrt{\alpha+1}+1}2 d\alpha \\ & = \frac {(\alpha+1)^\frac 32}3 + \frac \alpha 2 \bigg|_0^8 = \frac {38}3 \end{aligned}

Therefore 3 R = 38 3R = \boxed{38} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...