JEE Limits 1

Calculus Level 3

lim n ( 4 n + 8 n ) 1 n = ? \large \displaystyle\lim_{n\rightarrow\infty} (4^n+8^n)^{\frac{1}{n}} = \ ?

This problem is a part of My picks for JEE 1
8 20 \sqrt{20} 4 4.5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Discussions for this problem are now closed

First off all, let's not make the quick mistakes in questions like this, to use n n\rightarrow \infty and raise the power to 0 0 getting the answer as 1 1 as the digits in the brackets don't give a finite value.

The next step must be to try and bring the infinite terms in the denominators, to turn the complete value into 0 0 . So, first of all, let's take something common out of the parenthesis.

lim n ( 4 n + 8 n ) 1 n lim n 8 ( 1 + 1 2 n ) 1 n 8 × lim n ( 1 + 1 2 n ) 1 n \quad \quad \quad \lim _{ n\rightarrow \infty }{ { ({ 4 }^{ n }+{ 8 }^{ n }) }^{ \frac { 1 }{ n } } } \\ \Rightarrow \quad \lim _{ n\rightarrow \infty }{ 8{ (1+\frac { 1 }{ { 2 }^{ n } } ) }^{ \frac { 1 }{ n } } } \\ \Rightarrow \quad 8\times \lim _{ n\rightarrow \infty }{ { (1+\frac { 1 }{ { 2 }^{ n } } ) }^{ \frac { 1 }{ n } } }

Now, using n n\rightarrow \infty in the brackets, we get 1 n 0 \frac { 1 }{ n } \rightarrow 0\quad and 1 2 n 0 \quad \frac { 1 }{ { 2 }^{ n } } \rightarrow 0\quad

Using these values, we can calculate the limit to be an easy 8 8 !

Cheers!!:):)

Oussama Boussif
Feb 6, 2015

Let's do this in a more general way: We will consider that a > b a>b :

So a > b b a < 1 a>b \Rightarrow \frac{b}{a}<1

lim n ( a n + b n ) 1 n \displaystyle \lim_{n\rightarrow \infty} (a^n+b^n)^{\frac{1}{n}}

lim n a ( 1 + ( b a ) n ) 1 n \displaystyle \lim_{n\rightarrow \infty} a(1+(\frac{b}{a})^n)^{\frac{1}{n}}

lim n e l n ( a ( 1 + ( b a ) n ) 1 n ) \displaystyle \lim_{n\rightarrow \infty} e^{ln(a(1+(\frac{b}{a})^n)^{\frac{1}{n}})}

lim n e l n ( a ) + l n ( 1 + ( b a ) n ) n \displaystyle \lim_{n\rightarrow \infty} e^{ln(a)+\frac{ln(1+(\frac{b}{a})^n)}{n}}

lim n ( b a ) n = 0 lim n l n ( 1 + ( b a ) n ) n = 0 \displaystyle \lim_{n\rightarrow \infty} (\frac{b}{a})^{n}=0 \Rightarrow \displaystyle \lim_{n\rightarrow \infty} \frac{ln(1+(\frac{b}{a})^n)}{n} =0 Now we are left with the following limit:

lim n e l n ( a ) = a \displaystyle \lim_{n\rightarrow \infty} e^{ln(a)}=a

And putting a = 8 a=8 (because 8 > 4 8>4 ), we get: β = 8 \boxed{\beta=8}

Taking log

log y = 1 n × log ( 4 n + 8 n ) \log y = \dfrac{1}{n}×\log(4^n+8^n)

Using L hospital and then dividing the result obtained by 8^n, we get the answer as 8.

Moderator note:

L'hopital rule not needed. Once we know that ( 1 2 ) n 0 \left ( \frac 1 2 \right )^n \rightarrow 0 , we immediately get ln 8 \ln 8 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...