JEE Limits 2

Calculus Level 4

lim m lim n ( 1 + 1 n + 2 n n + 2 n + 3 n n + 3 n + 4 n n + + ( m 1 ) n + m n n m 2 ) \displaystyle \lim_{ m \rightarrow \infty } \displaystyle \lim_{n \rightarrow \infty } \left (\dfrac{1+\sqrt[n]{1^n+2^n}+\sqrt[n]{2^n+3^n}+\sqrt[n]{3^n+4^n}+\cdot+\sqrt[n]{(m-1)^n+m^n}}{m^2}\right )

This problem is a part of My picks for JEE 1
1 0 -1 None of these choices 0.5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Oussama Boussif
Feb 7, 2015

We will consider that a > b a>b :

So a > b b a < 1 a>b \Rightarrow \frac{b}{a}<1

lim n ( a n + b n ) 1 n \displaystyle \lim_{n\rightarrow \infty} (a^n+b^n)^{\frac{1}{n}}

lim n a ( 1 + ( b a ) n ) 1 n \displaystyle \lim_{n\rightarrow \infty} a(1+(\frac{b}{a})^n)^{\frac{1}{n}}

lim n e l n ( a ( 1 + ( b a ) n ) 1 n ) \displaystyle \lim_{n\rightarrow \infty} e^{ln(a(1+(\frac{b}{a})^n)^{\frac{1}{n}})}

lim n e l n ( a ) + l n ( 1 + ( b a ) n ) n \displaystyle \lim_{n\rightarrow \infty} e^{ln(a)+\frac{ln(1+(\frac{b}{a})^n)}{n}}

lim n ( b a ) n = 0 lim n l n ( 1 + ( b a ) n ) n = 0 \displaystyle \lim_{n\rightarrow \infty} (\frac{b}{a})^{n}=0 \Rightarrow \displaystyle \lim_{n\rightarrow \infty} \frac{ln(1+(\frac{b}{a})^n)}{n} =0

Now we are left with the following limit:

lim n e l n ( a ) = a \displaystyle \lim_{n\rightarrow \infty} e^{ln(a)}=a

Thus, lim n ( a n + b n ) 1 n = a \displaystyle \lim_{n\rightarrow \infty} (a^n+b^n)^{\frac{1}{n}}=a for a > b a>b .

Now, we can see the above limit turns out to be:

lim m 1 + 2 + 3 + . . . + m m 2 \displaystyle \lim_{m\rightarrow \infty} \frac{1+2+3+...+m}{m^2}

And: 1 + 2 + 3 + . . . + m = m ( m + 1 ) 2 1+2+3+...+m=\frac{m(m+1)}{2}

So: lim m m ( m + 1 ) 2 m 2 = 1 / 2 \displaystyle \lim_{m\rightarrow \infty} \frac{m(m+1)}{2m^2} =1/2

@Oussama Boussif I have added your previous solution here. Please check it once for accuracy.

Pranjal Jain - 6 years, 4 months ago

Log in to reply

Oh well, thanks for editing That.

Oussama Boussif - 6 years, 4 months ago

Nice solution! May I ask a question? How do you know when to use a > b?

Walter Tay - 5 years, 5 months ago
Kartik Sharma
Feb 4, 2015

Nice problem!

( a 1 ) n + a n n \sqrt[n]{{(a-1)}^{n} + {a}^{n}}

We will use Binomial expansion of ( a 1 ) n (a-1)^{n} .

( a 1 ) n = a n C ( n , 1 ) a n 1 + C ( n , 2 ) a n 2 . . . . . 1 n (a-1)^{n} = {a}^{n} - C(n,1){a}^{n-1} + C(n,2){a}^{n-2} -..... - {1}^{n}

Now, we have to find lim n ( a n C ( n , 1 ) a n 1 + C ( n , 2 ) a n 2 . . . . . 1 n ) \displaystyle\lim_{n \rightarrow \infty}({a}^{n} - C(n,1){a}^{n-1} + C(n,2){a}^{n-2} -..... - {1}^{n})

As n n \rightarrow\infty , n n 1 n 2 . . . . . n \rightarrow n-1 \rightarrow n-2 \rightarrow..... . Hence, it becomes

lim n ( a n 1 n + a n ( C ( n , 1 ) + C ( n , 2 ) . . . . . ) ) \displaystyle\lim_{n \rightarrow\infty}({a}^{n} - {1}^{n} + {a}^{n}(- C(n,1) + C(n,2) -..... ))

We know that C ( n , 1 ) + C ( n , 2 ) . . . . = 0 -C(n,1) + C(n,2) -.... = 0 . So, the limit becomes

lim n ( a n 1 n ) \displaystyle\lim_{n \rightarrow\infty}({a}^{n} - {1}^{n})

The final limit will be lim n ( ( a n 1 n ) 1 n ) \displaystyle\lim_{n \rightarrow\infty}({({a}^{n} - {1}^{n})}^{\frac{1}{n}})

which is easily equal to a a .

As a result, the limiting sum becomes 1 + 2 + 3 + 4 + . . . . . + ( m 1 ) + m = m ( m + 1 ) 2 1 + 2 + 3 + 4 + ..... + (m-1) + m = \frac{m(m+1)}{2}

lim n ( m ( m + 1 ) 2 m 2 ) = 1 2 \displaystyle\lim_{n \rightarrow\infty}(\frac{m(m+1)}{2{m}^{2}}) = \frac{1}{2}

Prakhar Bindal
Feb 11, 2017

Just take bigger number common from each bracket . as limit is towards infinity numbers less than 1 will go to zero

doing this you get get

1+2+3......m in numerator .

limit becomes (m+1)/2m which is 0.5 if m approaches infinity

Did it same

Shubham Rustagi - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...