JEE limits question

Calculus Level 5

l n ( y ) = lim n p = 1 n k = 1 p 1 k k + 1 k + 1 n x ( x + 1 ) d x ln ( n + 1 ) ln(y)=\lim_{n\to\infty}\sum_{p=1}^{n}\sum_{k=1}^{p-1} \int_{k}^{k+1} \dfrac{k+1}{nx(x+1)}dx - \ln(n+1)

If the value of y can be expressed as A e B Ae^{B} , where A A and B B are rational numbers with e e denoting Euler's number, find A × B A\times B .


The answer is -4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sid Patak
Jul 14, 2017

l n ( y ) = 1 n lim n ( p = 1 n k = 1 p 1 k k + 1 k + 1 x ( x + 1 ) d x n ln ( n + 1 ) ) ln(y) = \dfrac{1}{n} \lim_{n\to\infty} \left(\sum_{p=1}^{n}\sum_{k=1}^{p-1} \int_{k}^{k+1} \dfrac{k+1}{x(x+1)}dx - n\ln(n+1)\right)

Let us break the problem into pieces. First let us solve: k = 1 p 1 k k + 1 k + 1 x ( x + 1 ) d x \sum_{k=1}^{p-1} \int_{k}^{k+1} \dfrac{k+1}{x(x+1)}dx

Upon solving the definite integral we get:

k = 1 p 1 ( k + 1 ) ( 2 ln ( k + 1 ) ln ( k + 2 ) l n k ) \sum_{k=1}^{p-1} (k+1)(2\ln(k+1)-\ln(k+2)-lnk)

By rearranging the abouve expression it is obvious to notice the difference series here:

( k = 1 p 1 ( k + 1 ) ln ( k + 1 ) k l n k ) ( k = 1 p 1 ( k + 1 ) ln ( k + 2 ) k ln ( k + 1 ) ) + ( k = 1 p 1 ln ( k + 1 ) l n k ) \left(\sum_{k=1}^{p-1} (k+1)\ln(k+1)-klnk\right)-\left(\sum_{k=1}^{p-1} (k+1)\ln(k+2)-k\ln(k+1)\right)+\left(\sum_{k=1}^{p-1} \ln(k+1)-lnk\right)

Upon simplifying we get:

( p l n p ) + ( p ln ( p + 1 ) + l n 2 ) + ( l n p ) = ln ( 2 p ( p + 1 ) ( p + 1 ) p ) \left(plnp\right)+\left(-p\ln(p+1)+ln2\right)+\left(lnp\right) = \ln\left(\dfrac{2p^{(p+1)}}{(p+1)^p}\right)

Now moving towards the second part of the problem:

p = 1 n ln ( 2 p ( p + 1 ) ( p + 1 ) p ) n ln ( n + 1 ) \sum_{p=1}^{n} \ln\left(\dfrac{2p^{(p+1)}}{(p+1)^p}\right)- n\ln(n+1)

FACT : We know the sum of the logarithm is the product of its argument:

ln ( 2 n 1 2 2 3 3 4 n n + 1 2 1 3 2 4 3 n n 1 ( n + 1 ) n ) n ln ( n + 1 ) \ln\left(2^n\dfrac{1^2 2^3 3^4 \cdots n^{n+1}}{2^1 3^2 4^3 \cdots n^{n-1} (n+1)^n}\right)- n\ln(n+1) = ln ( 2 n ( n ! ) 2 ( n + 1 ) n ) n ln ( n + 1 ) = \ln\left(2^n\dfrac{(n!)^2}{(n+1)^n}\right)- n\ln(n+1) = ln ( 2 n ( n ! ) 2 ( n + 1 ) 2 n ) = \ln\left(2^n\dfrac{(n!)^2}{(n+1)^{2n}}\right)

Now applying the limit

1 n lim n ln ( 2 n ( ( n ! ) ( n + 1 ) n ) 2 ) \dfrac{1}{n} \lim_{n\to\infty} \ln\left(2^n\left(\dfrac{(n!)}{(n+1)^n}\right)^2\right)

Again using the FACT we convert the above expression to a sum

1 n lim n r = 1 n ln ( ( 2 ( r ) ( n + 1 ) ) 2 ) \dfrac{1}{n} \lim_{n\to\infty}\sum_{r=1}^{n} \ln\left(\left(2\dfrac{(r)}{(n+1)}\right)^2\right)

Clearly above the second term cancels to zero.

= 1 n lim n r = 1 n ln ( ( 2 ( r ) ( n + 1 ) ) 2 ) = \dfrac{1}{n} \lim_{n\to\infty}\sum_{r=1}^{n} \ln\left(\left(2\dfrac{(r)}{(n+1)}\right)^2\right)

The Reimann Sum can be used here as well as n+1 is essentially equal to n

= 0 1 ln ( 2 t 2 ) = \int_{0}^{1} \ln(2t^2)

l n ( y ) = l n 2 2 ln(y) = ln2-2

ln ( y 2 ) + 3 = 1 \ln(\dfrac{y}{2})+3=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...