JEE Main 2016 (26)

Calculus Level 4

y = x 3 + x + 1 x + 3 + x 1 \large y=\frac{|x-3|+|x+1|}{|x+3|+|x-1|} The area under the above curve, x x -axis and the ordinate at x = 3 , x = 1 x=-3,x=1 is


Try my set JEE main 2016 .
7 4 6 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ayush Verma
Mar 24, 2016

x + 3 + x 1 = ( x + 3 ) + ( 1 x ) = 4 , ( a s a s 3 x 1 ) y = x 3 + x + 1 4 i f 3 x 1 , y = ( 3 x ) + ( x 1 ) 4 = 1 x 2 i f 1 x 1 , y = ( 3 x ) + ( x + 1 ) 4 = 1 \left| x+3 \right| +\left| x-1 \right| =\left( x+3 \right) +\left( 1-x \right) =4,\left( as\quad as\quad -3\le x\le 1 \right) \\ \\ \therefore \quad y=\cfrac { \left| x-3 \right| +\left| x+1 \right| }{ 4 } \\ \\ if\quad -3\le x\le -1,\quad y=\cfrac { \left( 3-x \right) +\left( -x-1 \right) }{ 4 } =\cfrac { 1-x }{ 2 } \\ \\ if\quad -1\le x\le 1,\quad y=\cfrac { \left( 3-x \right) +\left( x+1 \right) }{ 4 } =1 A r e a = A B C D E A = ( 1 ) [ 1 ( 3 ) ] + 1 2 [ ( 1 ) ( 3 ) ] ( 1 ) = 5 A n s = A r e a + 2 = 5 + 2 = 7 Area=ABCDEA=\left( 1 \right) \left[ 1-\left( -3 \right) \right] +\cfrac { 1 }{ 2 } \left[ \left( -1 \right) -\left( -3 \right) \right] \left( 1 \right) =5\\ \\ Ans=Area+2=5+2=7

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...