If sec x + tan x = 7 2 2 and csc x + cot x = n m where m and n are positive coprime integers, then find the value of m + n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Beautiful solution! There is a typo in the last line. 2x should be 2t.
If sec x + tan x = 7 2 2 , then sec x − tan x = 2 2 7 , as we know that sec 2 x − tan 2 x = 1 .
Thus 2 sec x = 7 2 2 + 2 2 7 ⇒ sec x = 3 0 8 5 3 3 ⇒ cos x = 5 3 3 3 0 8 .
Similarly, tan x = 3 0 8 4 3 5 . Thus sin x = tan x × cos x = 5 3 3 4 3 5 .
Thus, csc x + c o t x = sin x 1 + cos x = 4 3 5 8 4 1 = 1 5 2 9 .
Thus m + n = 4 4 .
Lets simplify the expression we have to find. We have to find
cosec x + cot x = ?
⇒ sin x 1 + cos x
⇒ 2 sin 2 x cos 2 x 2 cos 2 2 x
⇒ cot 2 x = ?
Given equation → sec x + tan x = 7 2 2
⇒ cos x 1 + sin x = 7 2 2
⇒ cos 2 2 x − sin 2 2 x ( sin 2 x + cos 2 x ) 2 = 7 2 2
⇒ ( cos 2 x + sin 2 x ) ( cos 2 x − sin 2 x ) ( sin 2 x + cos 2 x ) 2 = 7 2 2
⇒ cos 2 x − sin 2 x cos 2 x + sin 2 x = 7 2 2
Applying Componendo and Dividendo to the above equation we get
cot 2 x = 1 5 2 9 . As we all know 2 9 and 1 5 are co-prime numbers, therefore the answer is 2 9 + 1 5 = 4 4
Multiply the equation sec x + tan x = 7 2 2 by cos x to get 1 + sin x = 7 2 2 cos x , which implies sin x = 7 2 2 cos x − 1 . sin 2 x + cos 2 x = 1 ( 7 2 2 cos x − 1 ) 2 + cos 2 x − 1 = 0 4 9 4 8 4 cos 2 x − 7 4 4 cos x + 1 + cos 2 x − 1 = 0 4 9 5 3 3 cos 2 x − 4 9 3 0 8 cos x = 0 cos x ( 4 9 5 3 3 cos x − 4 9 3 0 8 ) = 0 So cos x = 0 or cos x = 5 3 3 3 0 8 , but the first value is ruled out since it renders sec x undefined. Hence, sin x = 5 3 3 4 3 5 , csc x = 4 3 5 5 3 3 , and cot x = 4 3 5 3 0 8 csc x + cot x = 4 3 5 5 3 3 + 4 3 5 3 0 8 = 4 3 5 8 4 1 = 1 5 2 9 so that m + n = 4 4
YOU ARE SO HARDWORKING DUDE :)
s e c x + t a n x = 2 2 / 7
c o s x 1 + s i n x = 2 2 / 7
7 ( 1 + s i n x ) = 2 2 c o s x
7 ( 1 + s i n x ) = 2 2 1 − s i n 2 x
square both sides
4 9 ( 1 + s i n x ) 2 = 4 8 4 ( 1 − s i n 2 x
4 9 ( 1 + s i n x ) 2 = 4 8 4 ( 1 − s i n x ) ( 1 + s i n x )
4 9 ( 1 + s i n x ) = 4 8 4 ( 1 − s i n x )
4 9 + 4 9 s i n x = 4 8 4 − 4 8 4 s i n x
s i n x = 5 3 3 4 3 5
T h e r e f o r e , c o s x = 5 3 3 3 0 8 ,
u s e c o s 2 x = 1 − s i n 2 x or Pythagorean theorem
T h e r e f o r e , c o t x = 4 3 5 3 0 8 a n d c s c x = 4 3 5 5 3 3
c o t x + c s c x = 4 3 5 8 4 1 = 1 5 2 9
2 9 + 1 5 = 4 4
Problem Loading...
Note Loading...
Set Loading...
sec x + tan x 1 − t 2 1 + t 2 + 1 − t 2 2 t ( 1 − t 2 ) ( 1 + t ) 2 1 − t 1 + t 7 + 7 t ⟹ t = 7 2 2 = 7 2 2 = 7 2 2 = 7 2 2 = 2 2 − 2 2 t = 2 9 1 5 Let t = tan 2 x ⟹ sin x = 1 + t 2 2 t and cos x = 1 + t 2 1 − t 2
Now consider csc x + cot x = 2 t 1 + t 2 + 2 t 1 − t 2 = t 1 = 1 5 2 9 . Therefore, m + n = 2 9 + 1 5 = 4 4 .