JEE Main 2016 (28)

Geometry Level 3

If sec x + tan x = 22 7 \sec x+\tan x=\dfrac{22}{7} and csc x + cot x = m n \csc x+\cot x=\dfrac{m}{n} where m m and n n are positive coprime integers, then find the value of m + n m+n .


Try my set JEE main 2016 .
46 44 43 None of these 29 45

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Sep 26, 2018

sec x + tan x = 22 7 Let t = tan x 2 sin x = 2 t 1 + t 2 1 + t 2 1 t 2 + 2 t 1 t 2 = 22 7 and cos x = 1 t 2 1 + t 2 ( 1 + t ) 2 ( 1 t 2 ) = 22 7 1 + t 1 t = 22 7 7 + 7 t = 22 22 t t = 15 29 \begin{aligned} \sec x + \tan x & = \frac {22}7 & \small \color{#3D99F6} \text{Let }t = \tan \frac x2 \implies \sin x = \frac {2t}{1+t^2} \\ \frac {1+t^2}{1-t^2} + \frac {2t}{1-t^2} & = \frac {22}7 & \small \color{#3D99F6} \text{and }\cos x = \frac {1-t^2}{1+t^2} \\ \frac {(1+t)^2}{(1-t^2)} & = \frac {22}7 \\ \frac {1+t}{1-t} & = \frac {22}7 \\ 7 + 7t & = 22 - 22t \\ \implies t & = \frac {15}{29} \end{aligned}

Now consider csc x + cot x = 1 + t 2 2 t + 1 t 2 2 t = 1 t = 29 15 \csc x + \cot x = \dfrac {1+t^2}{2t} + \dfrac {1-t^2}{2t} = \dfrac 1t = \dfrac {29}{15} . Therefore, m + n = 29 + 15 = 44 m+n=29+15 = \boxed{44} .

Beautiful solution! There is a typo in the last line. 2x should be 2t.

Jam M - 2 years, 4 months ago

Log in to reply

Thanks. I have amended them.

Chew-Seong Cheong - 2 years, 4 months ago
Anand Raj
Jun 14, 2019

If sec x + tan x = 22 7 \sec{x}+\tan{x}=\dfrac{22}{7} , then sec x tan x = 7 22 \sec{x}-\tan{x}=\dfrac{7}{22} , as we know that sec 2 x tan 2 x = 1 \sec^{2}{x}-\tan^{2}{x}=1 .

Thus 2 sec x = 22 7 + 7 22 sec x = 533 308 cos x = 308 533 2\sec{x}=\dfrac{22}{7}+\dfrac{7}{22} \Rightarrow \sec{x}=\dfrac{533}{308} \Rightarrow \cos{x}=\boxed{\dfrac{308}{533}} .

Similarly, tan x = 435 308 \tan{x}=\dfrac{435}{308} . Thus sin x = tan x × cos x = 435 533 \sin{x}=\tan{x}\times \cos{x} = \boxed{\dfrac{435}{533}} .

Thus, csc x + c o t x = 1 + cos x sin x = 841 435 = 29 15 \csc{x}+cot{x} = \dfrac{1+\cos{x}}{\sin{x}}=\dfrac{841}{435}=\dfrac{29}{15} .

Thus m + n = 44 m+n=44 .

Akshaj Garg
Aug 27, 2019

Lets simplify the expression we have to find. We have to find

cosec x + cot x = ? \cosec \ x + \cot \ x=?

1 + cos x sin x \Rightarrow \dfrac{1+\cos \ x}{\sin \ x}

2 cos 2 x 2 2 sin x 2 cos x 2 \Rightarrow \dfrac{2 \cos^2\dfrac{\ x}{2}}{2 \sin \dfrac{\ x}{2} \cos \dfrac{\ x}{2}}

cot x 2 = ? \Rightarrow \boxed{ \cot \dfrac{\ x}{2} = ?}

Given equation \rightarrow sec x + tan x = 22 7 \sec\ x + \tan\ x = \dfrac{22}{7}

1 + sin x cos x = 22 7 \Rightarrow \dfrac{1+\sin\ x}{\cos\ x} = \dfrac{22}{7}

( sin x 2 + cos x 2 ) 2 cos 2 x 2 sin 2 x 2 = 22 7 \Rightarrow \dfrac{(\sin \dfrac{x}{2}+\cos \dfrac{x}{2})^2}{\cos^2 \dfrac{x}{2} - \sin^2 \dfrac{x}{2}}= \dfrac{22}{7}

( sin x 2 + cos x 2 ) 2 ( cos x 2 + sin x 2 ) ( cos x 2 sin x 2 ) = 22 7 \Rightarrow \dfrac{(\sin \dfrac{x}{2}+\cos \dfrac{x}{2})^2}{(\cos \dfrac{\ x}{2} + \sin \dfrac{\ x}{2})(\cos \dfrac{\ x}{2} - \sin \dfrac{\ x}{2} )}= \dfrac{22}{7}

cos x 2 + sin x 2 cos x 2 sin x 2 = 22 7 \Rightarrow \dfrac{\cos \dfrac{\ x}{2} + \sin \dfrac{x}{2}}{\cos \dfrac{\ x}{2}-\sin \dfrac{\ x}{2}}= \dfrac{22}{7}

Applying Componendo and Dividendo to the above equation we get

cot x 2 = 29 15 \cot \dfrac{\ x}{2}=\dfrac{29}{15} . As we all know 29 29 and 15 15 are co-prime numbers, therefore the answer is 29 + 15 = 44 29 + 15 = \boxed{44}

Jam M
Feb 3, 2019

Multiply the equation sec x + tan x = 22 7 \sec x + \tan x = \dfrac{22}{7} by cos x \cos x to get 1 + sin x = 22 7 cos x 1 + \sin x = \dfrac{22}{7}\cos x , which implies sin x = 22 7 cos x 1 \sin x = \dfrac{22}{7}\cos x - 1 . sin 2 x + cos 2 x = 1 ( 22 7 cos x 1 ) 2 + cos 2 x 1 = 0 484 49 cos 2 x 44 7 cos x + 1 + cos 2 x 1 = 0 533 49 cos 2 x 308 49 cos x = 0 cos x ( 533 49 cos x 308 49 ) = 0 \sin^2 x + \cos^2 x = 1 \\ \left( \dfrac{22}{7}\cos x - 1 \right)^2 + \cos^2 x - 1 = 0 \\ \dfrac{484}{49} \cos^2 x - \dfrac{44}{7} \cos x + 1 + \cos^2 x - 1 = 0 \\ \dfrac{533}{49} \cos^2 x - \dfrac{308}{49} \cos x = 0 \\ \cos x \left( \dfrac{533}{49} \cos x - \dfrac{308}{49} \right) = 0 So cos x = 0 \cos x = 0 or cos x = 308 533 \cos x = \dfrac{308}{533} , but the first value is ruled out since it renders sec x \sec x undefined. Hence, sin x = 435 533 \sin x = \dfrac{435}{533} , csc x = 533 435 \csc x = \dfrac{533}{435} , and cot x = 308 435 \cot x = \dfrac{308}{435} csc x + cot x = 533 435 + 308 435 = 841 435 = 29 15 \csc x + \cot x = \dfrac{533}{435} + \dfrac{308}{435} = \dfrac{841}{435} = \dfrac{29}{15} so that m + n = 44 m + n = 44

YOU ARE SO HARDWORKING DUDE :)

Isaac YIU Math Studio - 1 year, 10 months ago
Amal Hari
Feb 2, 2019

s e c x + t a n x = 22 / 7 secx +tanx =22/7

1 + s i n x c o s x = 22 / 7 \dfrac{1+sinx}{cosx}=22/7

7 ( 1 + s i n x ) = 22 c o s x 7(1+sinx)=22cosx

7 ( 1 + s i n x ) = 22 1 s i n 2 x 7(1+sinx)=22\sqrt{1-sin^{2} x}

square both sides

49 ( 1 + s i n x ) 2 = 484 ( 1 s i n 2 x 49(1+sinx)^{2} =484(1-sin^{2} x

49 ( 1 + s i n x ) 2 = 484 ( 1 s i n x ) ( 1 + s i n x ) 49(1+sinx)^{2}=484(1-sin x)(1+sinx)

49 ( 1 + s i n x ) = 484 ( 1 s i n x ) 49(1+sinx)=484(1-sinx)

49 + 49 s i n x = 484 484 s i n x 49 +49 sinx =484 -484 sinx

s i n x = 435 533 sin x=\dfrac{435}{533}

T h e r e f o r e , c o s x = 308 533 , Therefore , cos x=\dfrac{308}{533} ,

u s e c o s 2 x = 1 s i n 2 x use \ cos^{2} x=1-sin^{2}x or Pythagorean theorem

T h e r e f o r e , c o t x = 308 435 a n d c s c x = 533 435 Therefore , cot x=\dfrac{308}{435} and \ csc x= \dfrac{533}{435}

c o t x + c s c x = 841 435 = 29 15 cot x+csc x=\dfrac{841}{435} =\dfrac{29}{15}

29 + 15 = 44 29+15=44

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...