JEE main

Algebra Level 3

Find the domain of the real-valued function f ( x ) = 1 x 2 x 2 f(x)=\dfrac{1}{\sqrt{x^2-\lfloor x \rfloor ^2}} , where \lfloor \cdot \rfloor represents the greatest integer function .

( a ) R Z ( b ) R + Z ( c ) Z ( d ) R + \begin{array}{ll} (a)~\mathbb R - \mathbb Z &&&&&(b)~\mathbb R^+ - \mathbb Z\\ (c)~\mathbb Z &&&&&(d)~\mathbb R^+ \end{array}

d c b a

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Zuhair
Feb 12, 2017

Solution :
For f ( x ) f(x) to be real-valued, x 2 x 2 x^2-\lfloor x \rfloor ^2 has to be positive:
x 2 x 2 > 0 ( x x ) ( x + x ) > 0 { x } ( x + x ) > 0 \ x + x > 0 ( when { x } 0 ) x R + . \begin{aligned} x^2-\lfloor x \rfloor ^2&>0 \\ (x-\lfloor x \rfloor )(x+\lfloor x \rfloor )&>0 \\ \{x\} (x+\lfloor x\rfloor )&>0 \\\ x+ \lfloor x\rfloor &>0 \qquad (\text{when } \{x\} \neq 0) \\ x &\in \mathbb R^+. \end{aligned} As { x } 0 \{ x \} \geq 0 , excluding the values at which { x } = 0 , \{ x \}=0, i.e. x Z , x \in \mathbb Z, the domain of the real-valued function f ( x ) f(x) is R + Z . \mathbb R^+ - \mathbb Z. \ _\square

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...