JEE-Mains 2014 (14/30)

Calculus Level 3

( 1 + x 1 x ) e x + 1 x d x = ? \large \int \left( 1+x-\frac{1}{x} \right) e^{x+\frac{1}{x}}\, dx = \ ?

( x 1 ) e x + 1 x + c (x-1)e^{x+\frac{1}{x}}+c x e x + 1 x + c -xe^{x+\frac{1}{x}}+c x e x + 1 x + c xe^{x+\frac{1}{x}}+c ( x + 1 ) e x + 1 x + c (x+1)e^{x+\frac{1}{x}}+c

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akshat Sharda
Jul 29, 2017

{ e x + 1 x + x e x + 1 x ( 1 1 x 2 ) } d x = x e x + 1 x + C { f ( x ) + x f ( x ) } d x = x f ( x ) + C \int \left\{ e^{x+\frac{1}{x}}+xe^{x+\frac{1}{x}}\left(1-\frac{1}{x^2}\right) \right\} dx = xe^{x+\frac{1}{x}} +C \\ \because \int \left\{ f(x)+xf'(x)\right\} dx=xf(x)+C

Simple and elegant :D

John Frank - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...