JEE-Mains 2014 (15/30)

Calculus Level 4

0 π 1 + 4 sin 2 x 2 4 sin x 2 d x = ? \large \displaystyle \int_{0}^{\pi} \sqrt{1+4\sin^2\frac{x}{2} -4\sin\frac{x}{2}} \ \, dx= \ ?

4 3 4 4\sqrt{3}-4 π 4 \pi-4 2 π 3 4 4 3 \frac{2\pi}{3}-4-4\sqrt{3} 4 3 4 π 3 4\sqrt{3}-4-\frac{\pi}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

James Wilson
Dec 25, 2017

0 π 1 + 4 sin 2 x 2 4 sin x 2 d x = 0 π ( 2 sin x 2 1 ) 2 d x = 0 π 2 sin x 2 1 d x = ( π / 3 π 0 π / 3 ) ( ( 2 sin x 2 1 ) d x ) \int_0^\pi \sqrt{1+4\sin^2{\frac{x}{2}}-4\sin{\frac{x}{2}}}dx=\int_0^\pi \sqrt{\Big(2\sin{\frac{x}{2}}-1\Big)^2}dx=\int_0^\pi |2\sin{\frac{x}{2}}-1|dx=\Big(\int_{\pi/3}^\pi-\int_0^{\pi/3}\Big)\Big(\Big(2\sin{\frac{x}{2}}-1\Big)dx\Big) = ( 4 cos x 2 x ) ( π / 3 π 0 π / 3 ) = 4 cos π 2 π + 4 cos π 3 + π 3 ( 4 cos π 3 π 3 + 4 cos 0 + 0 ) = 4 3 4 π 3 =\Big(-4\cos{\frac{x}{2}}-x\Big)\Big(\Big|_{\pi/3}^\pi-\Big|_0^{\pi/3}\Big)=-4\cos{\frac{\pi}{2}}-\pi+4\cos{\frac{\pi}{3}}+\frac{\pi}{3}-\Big(-4\cos{\frac{\pi}{3}}-\frac{\pi}{3}+4\cos{0}+0\Big)=4\sqrt{3}-4-\frac{\pi}{3}

Similar solution with @James Wilson 's

I = 0 π 1 + 4 sin 2 x 2 4 sin x 2 d x = 0 π ( 2 sin x 2 1 ) 2 d x Note that ( 2 sin x 2 1 ) 2 0 for x [ 0 , π ] = 0 π 2 sin x 2 1 d x but 2 sin x 2 1 < 0 for x [ 0 , π 3 ) = 0 π 3 ( 1 2 sin x 2 ) d x + π 3 π ( 2 sin x 2 1 ) d x = x + 4 cos x 2 0 π 3 4 cos x 2 x π 3 π = π 3 + 2 3 0 4 0 π + 2 3 + π 3 = 4 3 4 π 3 \begin{aligned} I & = \int_0^\pi \sqrt{1+4\sin^2 \frac x2 - 4\sin \frac x2}\ dx \\ & = \int_0^\pi \sqrt{\left(2\sin \frac x2 - 1\right)^2} dx & \small \color{#3D99F6} \text{Note that }\sqrt{\left(2\sin \frac x2 - 1\right)^2} \ge 0 \text{ for }x \in [0, \pi] \\ & = \int_0^\pi \left|2\sin \frac x2 - 1\right| dx & \small \color{#3D99F6} \text{but }2\sin \frac x2 - 1 < 0 \text{ for }x \in \left[0, \frac \pi 3 \right) \\ & = \int_0^\frac \pi 3 \left(1-2\sin \frac x2\right) dx + \int_\frac \pi 3^\pi \left(2\sin \frac x2-1\right) dx \\ & = x + 4\cos \frac x2 \ \bigg|_0^\frac \pi 3 - 4\cos \frac x2 - x\ \bigg|^\pi_\frac \pi 3 \\ & = \frac \pi 3 + 2\sqrt 3 - 0 - 4 - 0 - \pi + 2\sqrt 3 + \frac \pi 3 \\ & = \boxed{4\sqrt 3-4-\dfrac \pi 3} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...