JEE-Mains 2014 (28/30)

Geometry Level 2

Let f k ( x ) = 1 k ( sin k x + cos k x f_k(x)=\frac{1}{k} (\sin^kx+\cos^kx ) where x R x \in \mathbb{R} and k 1 k \geq 1 . What is the value of f 4 ( x ) f 6 ( x ) f_4(x)-f_6(x) ?

1 12 \frac{1}{12} 1 3 \frac{1}{3} 1 4 \frac{1}{4} 1 6 \frac{1}{6}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aarsh Srivastava
Mar 7, 2018

We all are familiar with the fact that sin 2 x + cos 2 x = 1 \sin^{2}\ x + \cos^{2}\ x = 1 ;

So,

( sin 2 x + cos 2 x ) 2 = sin 4 x + cos 4 x + 2 sin 2 cos 2 x = 1 (\sin^{2}\ x + \cos^{2}\ x)^{2} = \sin^{4}\ x + \cos^{4}\ x + 2\sin^{2}\ \cos^{2}\ x =1

According to question;

f 4 ( x ) f 6 ( x ) = sin 4 x + cos 4 x 4 sin 6 x + cos 6 x 6 f_{4} (x) - f_{6} (x) = \frac {\sin^{4}\ x + \cos^{4}\ x} {4} - \frac {\sin^{6}\ x + \cos^{6}\ x} {6}

Now; a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) a^{3}+b^{3} = (a+b)(a^{2} - ab + b^{2}) . Similarly,

sin 6 x + cos 6 x = ( 1 ) ( sin 4 x + cos 4 x sin 2 cos 2 x ) \sin^{6}\ x + \cos^{6}\ x = (1)(\sin^{4}\ x + \cos^{4}\ x - \sin^{2}\ \cos^{2}\ x)

So,

f 4 ( x ) f 6 ( x ) = sin 4 x + cos 4 x 4 ( sin 4 x + cos 4 x sin 2 cos 2 x ) 6 ) f_{4} (x) - f_{6} (x) = \frac {\sin^{4}\ x + \cos^{4}\ x} {4} - (\frac {\sin^{4}\ x + \cos^{4}\ x - \sin^{2}\ \cos^{2}\ x)} {6})

= sin 4 x + cos 4 x 12 + 2 sin 2 cos 2 x 12 = \frac {\sin^{4}\ x + \cos^{4}\ x } {12} + \frac {2\sin^{2}\ \cos^{2}\ x} {12}

= sin 4 x + cos 4 x + 2 sin 2 cos 2 x 12 = \frac {\sin^{4}\ x + \cos^{4}\ x + 2\sin^{2}\ \cos^{2}\ x} {12}

= 1 12 =\frac{1} {12}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...