JEE-Mains 2014 (3/30)

Algebra Level 3

If a R a \in \mathbb{R} and the equation

3 ( x x ) 2 + 2 ( x x ) + a 2 = 0 -3\big(x-\lfloor x \rfloor\big)^2+2\big(x-\lfloor x \rfloor\big)+a^2=0

has no integral solution, then all possible values of a a lie in the interval __________ . \text{\_\_\_\_\_\_\_\_\_\_}.

( 2 , 1 ) (-2,-1) ( 1 , 2 ) (1,2) ( 1 , 0 ) ( 0 , 1 ) (-1,0) \cup (0,1) ( , 2 ) ( 2 , ) (-\infty ,-2) \cup (2,\infty)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tom Engelsman
Jun 23, 2018

Let u = x x u = x - \lfloor x \rfloor , which gives the quadratic equation:

3 u 2 + 2 u + a 2 = 0 x x = 2 ± 4 4 ( 3 ) ( a 2 ) 6 = 1 ± 3 a 2 + 1 3 -3u^2 + 2u + a^2 = 0 \Rightarrow x - \lfloor x \rfloor = \frac{-2 \pm \sqrt{4 - 4(-3)(a^2)}}{-6} = \frac{1 \pm \sqrt{3a^2 + 1}}{3} (i).

The quantity x x x - \lfloor x \rfloor must lie within ( 0 , 1 ) (0,1) for all x Z x \notin \mathbb{Z} . This implies for (i):

0 < 1 ± 3 a 2 + 1 3 < 1 0 < \frac{1 \pm \sqrt{3a^2 + 1}}{3} < 1

For the RHS inequality, we have:

± 3 a 2 + 1 < 2 ; \pm \sqrt{3a^2 + 1} < 2;

or 3 a 2 + 1 < 4 3a^2 + 1 < 4 ;

or a 2 < 1 a^2 < 1 ;

or a < 1 |a| < 1 ;

or 1 < a < 1 -1 < a < 1 (ii).

For the LHS inequality:

or 0 < 1 ± 3 a 2 + 1 ; 0 < 1 \pm \sqrt{3a^2 + 1};

or 1 < 3 a 2 + 1 1 < 3a^2 + 1 ;

or 0 < a 2 0 < a^2 ;

or 0 a 0 \neq a (iii).

Combining (ii) and (iii) gives the final result of a ( 1 , 0 ) ( 0 , 1 ) . \boxed{ a \in (-1,0) \cup (0,1)}.

I have another process

Shaon Malik - 6 months, 1 week ago

Much shorter

Shaon Malik - 6 months, 1 week ago
Shaon Malik
Dec 6, 2020

-3p^2 + 2p+a^2=0 Where p is fractional part of x So p must lie between 1 and -1 For no integer solution p(1) and p(-1) are both less than 0 Putting p=1, a^2<1 Putting p=-1,a^2<5 Intersecting the solutions a^2<1 So -1<a<1

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...