JEE-Mains 2014 (4/30)

Algebra Level 3

Let α \alpha and β \beta be the roots of equation p x 2 + q x + r , p 0 px^2+qx+r \ , \ p \neq 0 . If p , q , r p,q,r are in arithmetic progression and 1 α + 1 β = 4 \frac{1}{\alpha}+\frac{1}{\beta}=4 , then the value of α β |\alpha-\beta| is :

2 13 9 \frac{2 \sqrt{13} }{9} 2 17 9 \frac{2 \sqrt{17} }{9} 34 9 \frac{\sqrt{34} }{9} 61 9 \frac{\sqrt{61}}{9}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohit Ner
Jun 15, 2015

1 α + 1 β = 4 α + β α β = 4 q / p r / p = 4 q = 4 r \frac { 1 }{ \alpha } +\frac { 1 }{ \beta } =4\\ \Rightarrow \frac { \alpha +\beta }{ \alpha \beta } =4\\ \Rightarrow \frac { { -q }/{ p } }{ { r }/{ p } } =4\Rightarrow q=-4r
Since p , q p,q & r r are in arithematic progression, 2 q = p + r 8 r = p + r p = 9 r 2q=p+r \\ -8r=p+r \\ \Rightarrow p=-9r .
Difference of roots of the equation is given by: q 2 4 p r p = 16 r 2 + 36 r 2 9 r = 2 13 9 \frac { \sqrt { { q }^{ 2 }-4pr } }{ \left| p \right| } \\ =\frac { \sqrt { 16{ r }^{ 2 }+36{ r }^{ 2 } } }{ \left| -9r \right| } \\ \Huge \color{#3D99F6}{ =\boxed{\frac { 2\sqrt { 13 } }{ 9 } }}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...