JEE-Mains 2014 (7/30)

Algebra Level 4

If the coefficients of x 3 x^3 and x 4 x^4 in the expansion of ( 1 + a x + b x 2 ) ( 1 2 x ) 18 (1+ax+bx^2)(1-2x)^{18} in the powers of x x are both zero, what is ( a , b ) (a,b) ?

( 16 , 251 3 ) \left(16,\frac{251}{3}\right) ( 14 , 272 3 ) \left(14,\frac{272}{3}\right) ( 14 , 251 3 ) \left(14,\frac{251}{3}\right) ( 16 , 272 3 ) \left(16,\frac{272}{3}\right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 12, 2018

Note that ( 1 + a x + b x 2 ) ( 1 2 x ) 18 = ( 1 + a x + b x 2 ) k = 0 18 ( 1 ) k ( 18 k ) ( 2 x ) k \displaystyle (1+ax+bx^2)(1-2x)^{18} = (1+ax+bx^2) \sum_{k=0}^{18}(-1)^k \dbinom {18}k (2x)^k .

Therefore the coefficient of x 3 x^3 is given by:

( 1 ) 3 ( 18 3 ) ( 2 3 ) ( 1 ) + ( 1 ) 2 ( 18 2 ) ( 2 2 ) a + ( 1 ) 1 ( 18 1 ) ( 2 1 ) b = 0 6528 + 612 a 36 b = 0 51 a 3 b = 544 . . . ( 1 ) \begin{aligned} (-1)^3 \binom {18}3 (2^3)(1) + (-1)^2 \binom {18}2 (2^2)a + (-1)^1 \binom {18}1 (2^1)b & = 0 \\ -6528 + 612a -36b & = 0 \\ 51a - 3b & = 544 & ...(1) \end{aligned}

Similarly, the coefficient of x 4 x^4 is given by:

( 1 ) 4 ( 18 4 ) ( 2 4 ) ( 1 ) + ( 1 ) 3 ( 18 3 ) ( 2 3 ) a + ( 1 ) 2 ( 18 2 ) ( 2 2 ) b = 0 48960 6528 a + 612 b = 0 32 a 3 b = 240 . . . ( 2 ) \begin{aligned} (-1)^4 \binom {18}4 (2^4)(1) + (-1)^3 \binom {18}3 (2^3)a + (-1)^2 \binom {18}2 (2^2)b & = 0 \\ 48960 -6528a + 612b & = 0 \\ 32a - 3b & = 240 & ...(2) \end{aligned}

( 1 ) ( 2 ) : 19 a = 304 a = 16 \begin{aligned} (1)-(2): \quad 19a & = 304 \\ \implies a & = 16 \end{aligned}

( 2 ) : 32 ( 16 ) 3 b = 240 b = 512 240 3 = 272 3 \begin{aligned} (2): \quad 32(16) - 3b & = 240 \\ \implies b & = \frac {512-240}3 = \frac {272}3 \end{aligned}

Therefore, ( a , b ) = ( 16 , 273 3 ) (a, b) = \boxed{\left(16, \dfrac {273}3 \right)} .

Aqid Khatkhatay
Jan 6, 2017

18C3(-2)^3+a×18C16(-2)^2+b×18C17(-2)=0
-6528+612a-36b=0 put the options

Ravi Dwivedi
Jul 8, 2015

Wrong question Actually in jee mains it was(1+ax+bx^2)(1-2x)^18

This question that is posted can have infinite (a,b) pairs and none of the options satisfy

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...