JEE-Mains 2015 (10/30)

Calculus Level 3

lim x 0 ( 1 cos 2 x ) ( 3 + cos x ) x tan 4 x = ? \large \displaystyle \lim_{x \to 0} \dfrac{(1-\cos 2x)(3+\cos x)}{x \tan 4x}= \ ?

3 1 2 \frac{1}{2} 4 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 14, 2015

lim x 0 ( 1 cos 2 x ) ( 3 + cos x ) x tan 4 x = lim x 0 ( 1 [ 1 2 sin 2 x ] ) ( 3 + cos x ) cos 4 x x sin 4 x = lim x 0 2 sin 2 x ( 3 + cos x ) cos 4 x 2 x sin 2 x cos 2 x = lim x 0 sin 2 x ( 3 + cos x ) cos 4 x 2 x sin x cos x cos 2 x = lim x 0 ( sin x x ) ( 3 + cos x ) cos 4 x 2 cos x cos 2 x = ( 1 ) ( 3 + 1 ) ( 1 ) 2 ( 1 ) ( 1 ) = 2 \begin{aligned} \lim_{x \to 0} \frac{(1-\cos{2x})(3+\cos{x})}{x\tan{4x}} & = \lim_{x \to 0} \frac{(1-[1-2\sin^2{x}])(3+\cos{x})\cos{4x}}{x\sin{4x}} \\ & = \lim_{x \to 0} \frac{2\sin^2{x}(3+\cos{x})\cos{4x}}{2x\sin{2x}\cos{2x}} \\ & = \lim_{x \to 0} \frac{\sin^2{x}(3+\cos{x})\cos{4x}}{2x\sin{x}\cos{x}\cos{2x}} \\ & = \lim_{x \to 0} \left(\frac{\sin{x}}{x}\right) \frac{(3+\cos{x})\cos{4x}}{2\cos{x}\cos{2x}} \\ & = (1) \frac{(3+1)(1)}{2(1)(1)} = \boxed{2} \end{aligned}

In response to Challenge Master: \color{#D61F06}{\text{In response to Challenge Master:}}

lim x 0 ( 1 cos 2 x ) ( 3 + cos x ) x tan 4 x = lim x 0 ( 1 1 + 2 sin 2 x ) ( 3 + cos x ) x tan 4 x = lim x 0 ( 2 sin 2 x ) ( 3 + cos x ) x tan 4 x = ( 2 x 2 ) ( 3 + 1 ) x ( 4 x ) = 2 \begin{aligned} \lim_{x \to 0} \frac{(1-\cos{2x})(3+\cos{x})}{x\tan{4x}} & = \lim_{x \to 0} \frac{(1-1 + 2\sin^2{x})(3+\cos{x})}{x\tan{4x}} \\ & = \lim_{x \to 0} \frac{(2\sin^2{x})(3+\cos{x})}{x\tan{4x}} \\ & = \frac{(2x^2)(3+1)}{x(4x)} = \boxed{2} \end{aligned}

Moderator note:

You can use the approximations tan ( x ) x \tan(x) \approx x and cos ( x ) 1 x 2 2 \cos(x) \approx 1 - \frac{x^2}2 for small x x . Do you see why?

Yes, lim x 0 sin x = x \lim_{x \to 0} \sin{x} = x . Lack of practice and failed to see it.

Chew-Seong Cheong - 5 years, 11 months ago

Why sinx/x equals to 1 when the limit approaches zero? If it is 0/0, then the answer is NaN.

Tapas Mazumdar - 5 years, 11 months ago

Log in to reply

lim x 0 sin x = x \lim_{x \to 0} \sin{x} = x , therefore, lim x 0 sin x x = 1 \lim_{x \to 0} \dfrac{\sin{x}}{x} = 1

Chew-Seong Cheong - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...