JEE-Mains 2015 (11/30)

Calculus Level 3

Given : g ( x ) = { k x + 1 , 0 x 3 m x + 2 , 3 < x 5 \text{ Given : } g(x)= \begin{cases} k\sqrt{x+1} \quad, \quad 0 \leq x \leq 3 \\ mx+2 \quad , \quad 3<x \leq 5 \end{cases} If the function g ( x ) g(x) is differentiable, then the value of k + m k+m is :

10 3 \frac{10}{3} 4 16 5 \frac{16}{5} 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 14, 2015

If g ( x ) g(x) is differentiable or continuous throughout, then:

{ lim x 3 g ( x ) = lim x 3 + g ( x ) k 3 + 1 = m ( 3 ) + 2 2 k = 3 m + 2 lim x 3 g ( x ) = lim x 3 + g ( x ) k 2 3 + 1 = m k = 4 m \begin{cases} \displaystyle \lim_{x \to 3^-} g(x) = \lim_{x \to 3^+} g(x) & \Rightarrow k\sqrt{3+1} = m(3) + 2 & \Rightarrow 2k = 3m + 2 \\ \displaystyle \lim_{x \to 3^-} g'(x) = \lim_{x \to 3^+} g'(x) & \Rightarrow \dfrac{k}{2\sqrt{3+1}} = m & \Rightarrow k = 4m \end{cases}

2 ( 4 m ) = 3 m + 2 m = 2 5 k = 8 5 k + m = 2 \Rightarrow 2(4m) = 3m + 2 \quad \Rightarrow m = \frac{2}{5} \quad \Rightarrow k = \frac{8}{5} \quad \Rightarrow k + m = \boxed{2}

Moderator note:

Great! A differentiable function must be continuous. If you only tried evaluating the left and right limits, then you will still be missing an equation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...