JEE-Mains 2015 (2/30)

Algebra Level 5

A complex number z z is said to be unimodular if z = 1. |z|=1. Suppose z 1 z_1 and z 2 z_2 are complex numbers such that z 1 2 z 2 2 z 1 z 2 ˉ \dfrac{z_1-2z_2}{2-z_1\bar{z_2}} is unimodular and z 2 z_2 is not unimodular. Then the point z 1 z_1 lies on a :

straight line parallel to x x -axis circle of radius 2 circle of radius 2 \sqrt{2} straight line parallel to y y -axis

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anandhu Raj
Jun 15, 2015

Given z 1 2 z 2 2 z 1 z 2 ˉ = 1 \left| \frac { z_{ 1 }-2z_{ 2 } }{ 2-z_{ 1 }\bar { z_{ 2 } } } \right| =1\quad \quad

z 1 2 z 2 = 2 z 1 z 2 ˉ \Rightarrow \left| z_{ 1 }-2z_{ 2 } \right| =\quad \left| 2-z_{ 1 }\bar { z_{ 2 } } \right|

( z 1 2 z 2 ) ( z 1 ˉ 2 z 2 ˉ ) = ( 2 z 1 z 2 ˉ ) ( 2 z 1 ˉ z 2 ) \Rightarrow (z_{ 1 }-2z_{ 2 })(\bar { z_{ 1 } } -2\bar { z_{ 2 } } )=(2-z_{ 1 }\bar { z_{ 2 } } )(2-\bar { z_{ 1 } } z_{ 2 })

Solving, z 1 2 + 4 z 2 2 = 4 + z 2 2 z 1 2 { \left| z_{ 1 } \right| }^{ 2 }+4{ \left| z_{ 2 } \right| }^{ 2 }=4+{ \left| z_{ 2 } \right| }^{ 2 }{ \left| z_{ 1 } \right| }^{ 2 }

( z 1 2 4 ) ( 1 z 2 2 ) = 0 \Rightarrow ({ \left| z_{ 1 } \right| }^{ 2 }-4)(1-{ \left| z_{ 2 } \right| }^{ 2 })=0

but, ( 1 z 2 2 ) 0 (1-{ \left| z_{ 2 } \right| }^{ 2 })\neq 0 because given that z 2 z_{ 2 } not unimodular.

( z 1 2 4 ) = 0 \Rightarrow ({ \left| z_{ 1 } \right| }^{ 2 }-4)=0

z 1 = 2 { \Longrightarrow \left| z_{ 1 } \right| }=2

W h i c h r e p r e s e n t s a c i r c l e o f r a d i u s 2 Which\quad represents\quad a\quad circle\quad of\quad radius\quad 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...