Strange Cross Products

Geometry Level 1

Let a , b \vec{a},\vec{b} and c \vec{c} be three non-zero vectors such that no two of them are collinear and ( a × b ) × c = 1 3 b c a (\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3} |\vec{b}||\vec{c}| \vec{a} . If θ \theta is the angle between vectors b \vec{b} and c \vec{c} , then the value of sin θ \sin\theta is :

2 3 \frac{-\sqrt{2}}{3} 2 3 \frac{2}{3} 2 2 3 \frac{2\sqrt{2}}{3} 2 2 3 \frac{-2\sqrt{2}}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sandeep Bhardwaj
Oct 2, 2015

We have ( a × b ) × c = 1 3 b c a (\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3} |\vec{b}||\vec{c}| \vec{a} .

Using the notion of vector triple product, we can say that

( a c ) b ( b c ) a = 1 3 b c a \left( \vec{a} \cdot \vec{c} \right) \vec{b} - \left( \vec{b} \cdot \vec{c} \right) \vec{a} = \frac{1}{3} |\vec{b}||\vec{c}| \vec{a}

( a c ) b ( b c + 1 3 b c ) a = 0 \Rightarrow \left( \vec{a} \cdot \vec{c} \right) \vec{b} - \left( \vec{b} \cdot \vec{c} + \frac{1}{3} |\vec{b}||\vec{c}| \right) \vec{a} = \vec{0}

( a c ) = 0 \Rightarrow \left( \vec{a} \cdot \vec{c} \right)=0 and ( b c + 1 3 b c ) = 0 \left( \vec{b} \cdot \vec{c} + \frac{1}{3} |\vec{b}||\vec{c}| \right)=0 [Since a \vec{a} and b \vec{b} are non-collinear.]

Now using the definition of Dot Product , we can say that

b c cos θ + 1 3 b c = 0 |\vec{b}| \cdot |\vec{c}| \cos \theta + \frac{1}{3} |\vec{b}||\vec{c}| =0

cos θ = 1 3 \Rightarrow \cos \theta=-\frac 13

sin θ = 1 cos 2 θ = 8 9 = 2 2 3 \therefore \sin \theta=\sqrt{1-\cos^2 \theta}=\sqrt{\frac 89}=\frac{2 \sqrt{2}}{3} . \square

Moderator note:

Great approach using up the facts stated in the question.

Great usage of vector properties sir

Ashrith Appani - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...