Jee Mains 2018 practice problem -2

Calculus Level 3

If y = ( x + x 2 1 ) 15 + ( x x 2 1 ) 15 y=\left(x+\sqrt{x^{2}-1}\right)^{15}+\left(x-\sqrt{x^{2}-1}\right)^{15} , what is ( x 2 1 ) d 2 y d x 2 + x d y d x \left(x^{2}-1\right)\dfrac{d^{2}y}{dx^{2}}+x\dfrac{dy}{dx} ?

225 y 2 225y^{2} 225 y 225y 224 y 2 224y^{2} 125 y 125y

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

y = ( x + x 2 1 ) 15 + ( x x 2 1 ) 15 Let x = sec θ x 2 1 = tan θ = ( sec θ + tan θ ) 15 + ( sec θ tan θ ) 15 d y d x = 15 ( sec θ + tan θ ) 14 ( sec θ tan θ + sec 2 θ ) + 15 ( sec θ tan θ ) 14 ( sec θ tan θ sec 2 θ ) sec θ tan θ Chain rule: d y d x = d y d θ d θ d x = 15 ( ( sec θ + tan θ ) 15 ( sec θ tan θ ) 15 ) tan θ \begin{aligned} y & = \left(x+\sqrt{x^2-1}\right)^{15} + \left(x-\sqrt{x^2-1}\right)^{15} & \small \color{#3D99F6} \text{Let }x = \sec \theta \implies \sqrt{x^2-1} = \tan \theta \\ & = \left(\sec \theta +\tan \theta \right)^{15} + \left(\sec \theta -\tan \theta \right)^{15} \\ \color{#3D99F6} \frac {dy}{dx} & = \frac {\color{#3D99F6}15\left(\sec \theta +\tan \theta \right)^{14}\left(\sec \theta\tan \theta + \sec^2 \theta \right) + 15\left(\sec \theta - \tan \theta \right)^{14}\left(\sec \theta\tan \theta - \sec^2 \theta \right)}{\color{#D61F06}\sec \theta \tan \theta} & \small \color{#3D99F6} \text{Chain rule: }\frac {dy}{dx} = \frac {dy}{d \theta} \cdot\color{#D61F06} \frac {d\theta}{dx} \\ & = \frac {15\left(\left(\sec \theta +\tan \theta \right)^{15} - \left(\sec \theta - \tan \theta \right)^{15}\right)}{\tan \theta} \end{aligned}

Therefore,

tan θ d y d x = 15 ( ( sec θ + tan θ ) 15 ( sec θ tan θ ) 15 ) Differentiate both sides w.r.t x tan θ d 2 y d x 2 + sec 2 θ sec θ tan θ d y d x = 1 5 2 ( ( sec θ + tan θ ) 15 + ( sec θ tan θ ) 15 ) tan θ Multiply throughout by tan θ tan 2 θ d 2 y d x 2 + sec θ d y d x = 225 y ( x 2 1 ) d 2 y d x 2 + x d y d x = 225 y \begin{aligned} \tan \theta \frac {dy}{dx} & = 15\left(\left(\sec \theta +\tan \theta \right)^{15} - \left(\sec \theta - \tan \theta \right)^{15}\right) & \small \color{#3D99F6} \text{Differentiate both sides w.r.t }x \\ \tan \theta \cdot \frac {d^2y}{dx^2} + \frac {\sec^2 \theta}{\sec \theta \tan \theta} \cdot \frac {dy}{dx} & = \frac {15^2\left(\left(\sec \theta +\tan \theta \right)^{15} + \left(\sec \theta - \tan \theta \right)^{15}\right)}{\tan \theta} & \small \color{#3D99F6} \text{Multiply throughout by }\tan \theta \\ \tan^2 \theta \cdot \frac {d^2y}{dx^2} + \sec \theta \cdot \frac {dy}{dx} & = 225 y \\ \left(x^2-1\right) \frac {d^2y}{dx^2} + x \frac {dy}{dx} & = \boxed{225 y} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...