Real numbers , , and are in a geometric progression . If , which value cannot be?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let the common ratio of the geometric progression be r . Then a = r b , c = b r , and
a + b + c ⟹ x = r b + b + b r = ( r 1 + 1 + r ) b = r 1 + 1 + r
Multiplying both sides by r and rearranging, r 2 + ( 1 − x ) r + 1 = 0 ⟹ r = 2 x − 1 ± ( 1 − x ) 2 − 4 . For r to be real ( 1 − x ) 2 − 4 ≥ 0 ⟹ ( 1 − x ) 2 ≥ 4 ⟹ x ≤ − 1 ∪ x ≥ 3 , and 2 is not in the range.