JEE maths #7

Algebra Level 4

Let C 0 , C 1 , C 2 . . . , C n C_0, C_1, C_2 ..., C_n be the binomial coefficients of the expansion ( 1 + x ) n (1+x)^n , where n N n \in \mathbb N . If S n = 2 C 0 2 + 2 2 C 1 6 + 2 3 C 2 12 + + 2 n + 1 C n ( n + 1 ) ( n + 2 ) + 1 n + 1 + 1 2 ( n + 1 ) ( n + 2 ) S_n = \dfrac {2C_0}2 + \dfrac {2^2C_1}6 + \dfrac {2^3C_2}{12} + \cdots + \dfrac {2^{n+1}C_n}{(n+1)(n+2)} + \dfrac 1{n+1} + \dfrac 1{2(n+1)(n+2)} , then find the value of S 7 S 6 \dfrac {S_7}{S_6} .


  • For more JEE problems try my set 2
  • For more KVPY practice questions try my set 1
7 2 \frac 72 7 6 \frac 76 7 3 \frac 73 7 12 \frac 7{12} 7 7

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 30, 2017

S n = 2 C 0 2 + 2 2 C 1 6 + 2 3 C 2 12 + + 2 n + 1 C n ( n + 1 ) ( n + 2 ) + 1 n + 1 + 1 2 ( n + 1 ) ( n + 2 ) = k = 0 n 2 k + 1 C k ( k + 1 ) ( k + 2 ) + 2 n + 5 2 ( n + 1 ) ( n + 2 ) = k = 0 n 2 k + 1 n ! ( k + 1 ) ( k + 2 ) k ! ( n k ) ! + 2 n + 5 2 ( n + 1 ) ( n + 2 ) = k = 0 n 2 k + 1 n ! ( k + 2 ) ! ( n k ) ! + 2 n + 5 2 ( n + 1 ) ( n + 2 ) = 1 2 ( n + 1 ) ( n + 2 ) k = 0 n 2 k + 2 ( n + 2 ) ! ( k + 2 ) ! ( n k ) ! + 2 n + 5 2 ( n + 1 ) ( n + 2 ) = 1 2 ( n + 1 ) ( n + 2 ) ( k = 0 n ( n + 2 k + 2 ) 2 k + 2 + 2 n + 5 ) = 1 2 ( n + 1 ) ( n + 2 ) ( j = 0 n + 2 ( n + 2 j ) 2 j ( n + 2 0 ) 2 0 ( n + 2 1 ) 2 1 + 2 n + 5 ) = ( 1 + 2 ) n + 2 1 2 ( n + 2 ) + 2 n + 5 2 ( n + 1 ) ( n + 2 ) = 3 n + 2 2 ( n + 1 ) ( n + 2 ) \begin{aligned} S_n & = \frac {2C_0}2 + \frac {2^2C_1}6 + \frac {2^3C_2}{12} + \cdots + \frac {2^{n+1}C_n}{(n+1)(n+2)} + \frac 1{n+1} + \frac 1{2(n+1)(n+2)} \\ & = \sum_{k=0}^n \frac {2^{k+1}C_k}{(k+1)(k+2)} + \frac {2n+5}{2(n+1)(n+2)} \\ & = \sum_{k=0}^n \frac {2^{k+1}n!}{(k+1)(k+2)k!(n-k)!} + \frac {2n+5}{2(n+1)(n+2)} \\ & = \sum_{k=0}^n \frac {2^{k+1}n!}{(k+2)!(n-k)!} + \frac {2n+5}{2(n+1)(n+2)} \\ & = \frac 1{2(n+1)(n+2)} \sum_{k=0}^n \frac {2^{k+2}(n+2)!}{(k+2)!(n-k)!} + \frac {2n+5}{2(n+1)(n+2)} \\ & = \frac 1{2(n+1)(n+2)} \left(\sum_{k=0}^n {n+2 \choose k+2} 2^{k+2} + 2n+5 \right) \\ & = \frac 1{2(n+1)(n+2)} \left(\sum_{\color{#3D99F6}j=0}^{\color{#3D99F6}n+2} {n+2 \choose \color{#3D99F6}j} 2^{\color{#3D99F6}j} {\color{#3D99F6}- {n+2 \choose 0}2^0 - {n+2 \choose 1}2^1} + 2n+5 \right) \\ & = \frac {{\color{#3D99F6}(1+2)^{n+2} - 1 - 2(n+2)}+2n+5}{2(n+1)(n+2)} \\ & = \frac {3^{n+2}}{2(n+1)(n+2)} \end{aligned}

S 7 S 6 = 3 9 2 ( 8 ) ( 9 ) × 2 ( 7 ) ( 8 ) 3 8 = 7 3 \begin{aligned} \frac {S_7}{S_6} & = \frac {3^9}{2(8)(9)} \times \frac {2(7)(8)}{3^8} = \boxed{\dfrac 73} \end{aligned}

Absolutely brilliant solution sir !!!

Rahil Sehgal - 4 years, 2 months ago

Log in to reply

You should learn up LaTex since you are posting so many problems. I have been converting your image problems into LaTex. You can see the codes by clicking the pull-down menu \cdots at the right-hand bottom corner of the problem and select Toggle LaTex . Or place your mouse cursor on the formulas.

Chew-Seong Cheong - 4 years, 2 months ago

Log in to reply

Thank you very much sir... I have uploaded a new problem in LATEX. I hope the problem is much better...

Rahil Sehgal - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...