If , , and are in an arithmetic progression and is not a integral multiple of , then find the value of .
For more JEE problems try my set
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
If a , b and c are in an arithmetic progression, then a + c = 2 b . Therefore,
cot ( θ − α ) + cot ( θ + α ) cot α − cot θ cot α cot θ + 1 + cot α + cot θ cot α cot θ − 1 ( cot α − cot θ ) ( cot α + cot θ ) ( cot α + cot θ ) ( cot α cot θ + 1 ) + ( cot α − cot θ ) ( cot α cot θ − 1 ) cot 2 α − cot 2 θ 2 cot 2 α cot θ + 2 cot θ cot 2 α + 1 3 cot 2 θ sin 2 θ 3 cos 2 θ sin 2 θ 3 ( 1 − sin 2 θ ) sin 2 θ 3 − 3 sin 2 θ 3 ⟹ sin 2 α 2 sin 2 θ = 2 ⋅ 3 cot θ = 6 cot θ = 6 cot θ = 6 cot θ = 3 cot 2 α − 3 cot 2 θ = 2 cot 2 α − 1 = sin 2 α 2 cos 2 α − 1 = sin 2 α 2 ( 1 − sin 2 α ) − 1 = sin 2 α 2 − 2 − 1 = sin 2 α 2 = 3