JEE maths#13

Geometry Level 4

If cot ( θ α ) \cot ( \theta -\alpha) , 3 cot θ 3 \cot \theta , and cot ( θ + α ) \cot ( \theta + \alpha) are in an arithmetic progression and θ \theta is not a integral multiple of π 2 \dfrac \pi 2 , then find the value of 2 sin 2 θ sin 2 α \dfrac{2 \sin^{2} \theta}{ \sin^{2} \alpha} .


For more JEE problems try my set


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

If a a , b b and c c are in an arithmetic progression, then a + c = 2 b a+c = 2b . Therefore,

cot ( θ α ) + cot ( θ + α ) = 2 3 cot θ cot α cot θ + 1 cot α cot θ + cot α cot θ 1 cot α + cot θ = 6 cot θ ( cot α + cot θ ) ( cot α cot θ + 1 ) + ( cot α cot θ ) ( cot α cot θ 1 ) ( cot α cot θ ) ( cot α + cot θ ) = 6 cot θ 2 cot 2 α cot θ + 2 cot θ cot 2 α cot 2 θ = 6 cot θ cot 2 α + 1 = 3 cot 2 α 3 cot 2 θ 3 cot 2 θ = 2 cot 2 α 1 3 cos 2 θ sin 2 θ = 2 cos 2 α sin 2 α 1 3 ( 1 sin 2 θ ) sin 2 θ = 2 ( 1 sin 2 α ) sin 2 α 1 3 sin 2 θ 3 = 2 sin 2 α 2 1 3 sin 2 θ = 2 sin 2 α 2 sin 2 θ sin 2 α = 3 \begin{aligned} \cot (\theta - \alpha) + \cot (\theta + \alpha) & = 2\cdot 3 \cot \theta \\ \frac {\cot \alpha \cot \theta + 1}{\cot \alpha - \cot \theta} + \frac {\cot \alpha \cot \theta - 1}{\cot \alpha + \cot \theta} & = 6 \cot \theta \\ \frac {(\cot \alpha + \cot \theta)(\cot \alpha \cot \theta + 1) + (\cot \alpha - \cot \theta)(\cot \alpha \cot \theta - 1)}{(\cot \alpha - \cot \theta)(\cot \alpha + \cot \theta)} & = 6 \cot \theta \\ \frac {2 \cot^2 \alpha \cot \theta + 2 \cot \theta}{\cot^2 \alpha - \cot^2 \theta} & = 6 \cot \theta \\ \cot^2 \alpha + 1 & = 3 \cot^2 \alpha - 3 \cot^2 \theta \\ 3 \cot^2 \theta & = 2 \cot^2 \alpha - 1 \\ \frac {3\cos^2 \theta}{\sin^2 \theta} & = \frac {2\cos^2 \alpha}{\sin^2 \alpha} - 1 \\ \frac {3 (1 - \sin^2 \theta)}{\sin^2 \theta} & = \frac {2(1- \sin^2 \alpha)}{\sin^2 \alpha} - 1 \\ \frac 3{\sin^2 \theta} - 3 & = \frac 2{\sin^2 \alpha} - 2 - 1 \\ \frac 3{\sin^2 \theta} & = \frac 2{\sin^2 \alpha} \\ \implies \frac {2\sin^2 \theta}{\sin^2 \alpha} & = \boxed{3} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...