JEE maths#16

Geometry Level 4

If cos 4 ( θ ) + α \cos^{4} ( \theta) + \alpha and sin 4 ( θ ) + α \sin^{4} ( \theta ) +\alpha are the roots of the equation x 2 + b ( 2 x + 1 ) = 0 x^{2} + b(2x+1) = 0 , and cos 2 ( θ ) + β \cos^{2} ( \theta ) + \beta and sin 2 ( θ ) + β \sin^{2} ( \theta ) + \beta are the roots of the equation x 2 + 4 x + 2 = 0 x^{2} + 4x + 2 = 0 , then find the value of positive integer b b .

Note :- θ \theta can be a non- real number as well


  • For more JEE problems try my set


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Since cos 2 θ + β \cos^2 \theta + \beta and sin 2 θ + β \sin^2 \theta + \beta are the roots of x 2 + 4 x + 2 x^2+4x+2 , using Vieta's formula , we have:

{ cos 2 θ + β + sin 2 θ + β = 4 . . . ( 1 ) ( cos 2 θ + β ) ( sin 2 θ + β ) = 2 . . . ( 2 ) \begin{cases} \cos^2 \theta + \beta + \sin^2 \theta + \beta = - 4 &...(1) \\ (\cos^2 \theta + \beta)(\sin^2 \theta + \beta) = 2 &...(2) \end{cases}

From equation (1):

cos 2 θ + β + sin 2 θ + β = 4 1 + 2 β = 4 β = 5 2 \begin{aligned} \cos^2 \theta + \beta + \sin^2 \theta + \beta & = - 4 \\ 1+2\beta &= - 4 \\ \implies \beta & = - \frac 52 \end{aligned}

From equation (2):

( cos 2 θ + β ) ( sin 2 θ + β ) = 2 cos 2 θ sin 2 θ + β ( cos 2 θ + sin 2 θ ) + β 2 = 2 1 4 sin 2 2 θ + β + β 2 = 2 1 4 sin 2 2 θ 5 2 + 25 4 = 2 sin 2 2 θ 10 + 25 = 8 sin 2 2 θ = 7 where θ is complex. \begin{aligned} (\cos^2 \theta + \beta)(\sin^2 \theta + \beta) & = 2 \\ \cos^2 \theta \sin^2 \theta + \beta(\cos^2 \theta + \sin^2 \theta) + \beta^2 & = 2 \\ \frac 14 \sin^2 2 \theta + \beta + \beta^2 & = 2 \\ \frac 14 \sin^2 2 \theta - \frac 52 + \frac {25}4 & = 2 \\ \sin^2 2 \theta - 10 + 25 & = 8 \\ \implies \sin^2 2 \theta & = -7 & \small \color{#3D99F6} \text{where } \theta \text{ is complex.} \end{aligned}

Also since cos 4 θ + α \cos^4 \theta + \alpha and sin 4 θ + α \sin^4 \theta + \alpha are the roots of x 2 + b ( 2 x + 1 ) x^2+b(2x+1) , we have:

cos 4 θ + α + sin 4 θ + α = 2 b cos 4 θ + sin 4 θ + 2 α = 2 b ( cos 2 θ + sin 2 θ ) 2 2 cos 2 θ sin 2 θ + 2 α = 2 b 1 2 1 2 sin 2 2 θ + 2 α = 2 b 1 + 7 2 + 2 α = 2 b 9 + 4 α = 4 b . . . ( 3 ) \begin{aligned} \cos^4 \theta + \alpha + \sin^4 \theta + \alpha & = -2b \\ \cos^4 \theta + \sin^4 \theta + 2 \alpha & = -2b \\ (\cos^2 \theta + \sin^2 \theta)^2 - 2\cos^2 \theta \sin^2 \theta + 2\alpha & = -2b \\ 1^2 - \frac 12 \sin^2 2 \theta + 2\alpha & = -2b \\ 1 + \frac 72 + 2\alpha & = - 2b \\ 9 + 4\alpha & = -4b & ...(3) \end{aligned}

( cos 4 θ + α ) ( sin 4 θ + α ) = b cos 4 θ sin 4 θ + α ( cos 4 θ + sin 4 θ ) + α 2 = b 1 16 sin 4 2 θ + 9 2 α + α 2 = b 49 16 + 9 2 α + α 2 = b 49 + 72 α + 16 α 2 = 16 b . . . ( 4 ) \begin{aligned} (\cos^4 \theta + \alpha)(\sin^4 \theta + \alpha) & = b \\ \cos^4 \theta \sin^4 \theta + \alpha (\cos^4 \theta + \sin^4 \theta) + \alpha^2 & = b \\ \frac 1{16} \sin^4 2\theta + \frac 92\alpha + \alpha^2 & = b \\ \frac {49}{16} + \frac 92\alpha + \alpha^2 & = b \\ 49 + 72 \alpha + 16\alpha^2 & = 16b & ...(4) \end{aligned}

4 ( 3 ) + ( 4 ) : 16 α 2 + 88 α + 85 = 0 ( 4 α + 5 ) ( 4 α + 17 ) = 0 \begin{aligned} 4(3)+(4): \quad 16\alpha^2 + 88\alpha + 85 & = 0 \\ (4\alpha + 5)(4\alpha + 17) & = 0 \end{aligned}

{ α = 5 4 ( 1 ) : 9 + 4 ( 5 4 ) = 4 b b = 1 negative, rejected. α = 17 4 ( 1 ) : 9 + 4 ( 17 4 ) = 4 b b = 2 positive, accepted. \begin{cases} \alpha = - \frac 54 & (1): & 9 + 4\left(-\frac 54\right) = -4b & \implies \color{#D61F06} b = -1 & \color{#D61F06} \text{negative, rejected.} \\ \alpha = - \frac {17}4 & (1): & 9 + 4\left(-\frac {17}4\right) = -4b & \implies \color{#3D99F6} b = \boxed{2} & \color{#3D99F6} \text{positive, accepted.} \end{cases}

Sir in the first line the equation should be x 2 + 4 x + 2 x^{2} + 4x + 2 .

Nice solution.. did the same way.. (+1)

Rahil Sehgal - 4 years, 2 months ago

Log in to reply

Thanks. Done the change.

Chew-Seong Cheong - 4 years, 2 months ago

Done similarly. And @Rahil Sehgal please post more jee and kvpy questions

Md Zuhair - 4 years, 2 months ago

Log in to reply

Okay buddy... :)

Rahil Sehgal - 4 years, 2 months ago

Take difference of roots and it's a 3 liner...

Vishal Yadav - 4 years, 2 months ago

Log in to reply

Hey, are you interested in joining a whatsapp brilliant group? If you have whatsapp and if you want to join, please post your phone number here.

Thank you

Md Zuhair - 4 years, 2 months ago

A little unnecessary work imho. there was no need to find beta. The difference of roots will be same in both the cases. So simply equate the square of the difference of roots. Thus, 16-4*2 = (2b)^2 - 4b Solve to get, b=2,-1 and then b=2

Jatin Sharma - 4 years, 2 months ago
Aareyan Manzoor
May 7, 2017

let the roots of the first eqn be a 1 , b 1 a_1, b_1 and second one be a 2 , b 2 a_2,b_2 . we see that ( a 1 b 1 ) 2 = ( cos 4 ( θ ) sin 4 ( θ ) ) 2 = ( ( cos 2 ( θ ) sin 2 ( θ ) ) ( cos 2 ( θ ) + sin 2 ( θ ) ) ) 2 = ( cos 2 ( θ ) sin 2 ( θ ) ) 2 = ( a 2 b 2 ) 2 (a_1-b_1)^2=(\cos^4(\theta)-\sin^4(\theta))^2=((\cos^2(\theta)-\sin^2(\theta))(\cos^2(\theta)+\sin^2(\theta)))^2=(\cos^2(\theta)-\sin^2(\theta))^2=(a_2-b_2)^2 we can write this as ( a 1 + b 1 ) 2 4 a 1 b 1 = ( a 2 + b 2 ) 2 4 a 2 b 2 (a_1+b_1)^2-4a_1 b_1=(a_2+b_2)^2-4a_2b_2 using vieta's formula we have ( 2 b ) 2 4 b = ( 4 ) 2 4 2 b 2 b 2 = 0 b = 2 , 1 (-2b)^2-4b=(-4)^2-4*2\to b^2-b-2=0\to b= \boxed{2},-1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...