JEE maths#18

Algebra Level 5

S = 1 2 1 × 3 + 2 2 3 × 5 + 3 2 5 × 7 + + 50 0 2 999 × 1001 \large S = \frac{1^{2}}{1\times3} + \frac{2^{2}}{3\times5} + \frac{3^{2}}{5\times7} + \cdots + \frac{500^{2}}{999\times1001}

For S S as defined above, find the number of divisors of S \left \lfloor S \right \rfloor .


Notation: \lfloor \cdot \rfloor denotes the floor function .


For more JEE problems try my set


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

S = 1 2 1 × 3 + 2 2 3 × 5 + 3 2 5 × 7 + + 50 0 2 999 × 1001 = n = 1 500 n 2 ( 2 n 1 ) ( 2 n + 1 ) = n = 1 500 n 2 4 n 2 1 = 1 4 n = 1 500 4 n 2 1 + 1 4 n 2 1 = 1 4 n = 1 500 ( 1 + 1 4 n 2 1 ) = 500 4 + 1 4 n = 1 500 1 ( 2 n 1 ) ( 2 n + 1 ) = 125 + 1 4 n = 1 500 1 ( 2 n 1 ) ( 2 n + 1 ) = 125 + 1 8 n = 1 500 ( 1 2 n 1 1 2 n + 1 ) = 125 + 1 8 ( 1 1 1 1001 ) \begin{aligned} S & = \frac {1^2}{1 \times 3} + \frac {2^2}{3 \times 5} + \frac {3^2}{5 \times 7} + \cdots + \frac {500^2}{999 \times 1001} \\ & = \sum_{n=1}^{500} \frac {n^2}{(2n-1)(2n+1)} \\ & = \sum_{n=1}^{500} \frac {n^2}{4n^2-1} \\ & = \frac 14 \sum_{n=1}^{500} \frac {4n^2-1+1}{4n^2-1} \\ & = \frac 14 \sum_{n=1}^{500} \left(1+ \frac 1{4n^2-1}\right) \\ & = \frac {500}4 + \frac 14 \sum_{n=1}^{500} \frac 1{(2n-1)(2n+1)} \\ & = 125 + \frac 14 \sum_{n=1}^{500} \frac 1{(2n-1)(2n+1)} \\ & = 125 + \frac 18 \sum_{n=1}^{500} \left(\frac 1{2n-1} - \frac 1{2n+1} \right) \\ & = 125 + \frac 18 \left(\frac 11 - \frac 1{1001} \right) \end{aligned}

S = 125 = 5 3 \implies \lfloor S \rfloor = 125 = 5^{\color{#3D99F6}3} . Therefore, the number of divisors of S \lfloor S \rfloor is 3 + 1 = 4 {\color{#3D99F6}3}+1=\boxed{4} .

@Chew-Seong Cheong- Did the same ,also i think that, if S = k = 1 n k 2 ( 2 k 1 ) ( 2 k + 1 ) S=\displaystyle\sum_{k=1}^{n} \dfrac {k^2}{(2k-1)(2k+1)} then S \lfloor S\rfloor will always be equal to n 4 \left\lfloor \dfrac{n}{4}\right\rfloor - :)

Anirudh Sreekumar - 4 years, 2 months ago

Log in to reply

base from sir @Chew-Seong Cheong , your conjecture is correct. :D ~

Christian Daang - 4 years, 2 months ago
Rahil Sehgal
Apr 3, 2017

Did the same way .

Aniruddha Bagchi - 4 years, 1 month ago

Log in to reply

But @Chew-Seong Cheong Sir's approach is better and more intuitive, isn't it ?

Aniruddha Bagchi - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...