JEE maths#22

Calculus Level 4

If S = 4 1 2 3 + 5 2 3 4 + 6 3 4 5 S = \dfrac{4}{1 \cdot 2 \cdot 3} + \dfrac{5}{2 \cdot 3 \cdot 4} + \dfrac{6}{3 \cdot 4 \cdot 5} \cdots till n n terms and S = K ( 2 n + 5 ) 2 ( n + 1 ) ( n + 2 ) S = K - \dfrac{(2n+5)}{2(n+1)(n+2)} , then find K K .


For more JEE problems try my set
3 4 \frac 34 5 4 \frac 54 1 2 \frac 12 1 4 \frac 14

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ankit Kumar Jain
May 22, 2017

S = k = 1 n k + 3 k ( k + 1 ) ( k + 2 ) S = \displaystyle\sum_{k=1}^{n} \dfrac{k+3}{k(k+1)(k+2)}

k = 1 n 2 k ( k + 1 ) k + 3 2 k + 4 \Rightarrow \displaystyle\sum_{k=1}^{n} \dfrac2{k(k+1)}\cdot\dfrac{k+3}{2k+4}

k = 1 n 2 k ( k + 1 ) ( 1 k + 1 2 k + 4 ) \Rightarrow \displaystyle\sum_{k=1}^{n} \dfrac2{k(k+1)}\cdot\left(1 - \dfrac{k+1}{2k+4}\right)

k = 1 n 2 k ( k + 1 ) 1 k ( k + 2 ) \Rightarrow \displaystyle\sum_{k=1}^{n} \dfrac2{k(k+1)} - \dfrac1{k(k+2)}

2 ( 1 1 n + 1 ) 1 2 ( 1 + 1 2 1 n + 1 1 n + 2 ) \Rightarrow 2\left(1-\dfrac1{n+1}\right) - \dfrac12\left(1 + \dfrac12 - \dfrac1{n+1} - \dfrac1{n+2}\right)

5 4 3 2 ( n + 1 ) + 1 2 ( n + 2 ) \Rightarrow \dfrac54 - \dfrac3{2(n+1)}+ \dfrac1{2(n+2)}

5 4 1 2 ( 3 ( n + 1 ) 1 ( n + 2 ) ) \Rightarrow \dfrac54 - \dfrac12\left(\dfrac3{(n+1)} - \dfrac1{(n+2)}\right)

5 4 ( 2 n + 5 ) 2 ( n + 1 ) ( n + 2 ) \Rightarrow \dfrac54 - \dfrac{(2n+5)}{2(n+1)(n+2)}

K = 5 4 \therefore \boxed{K = \dfrac54}

@Rahil Sehgal Please tell me about the calculus approach to the question.!

Ankit Kumar Jain - 4 years ago
Chew-Seong Cheong
Apr 25, 2017

S = k = 1 n k + 3 k ( k + 1 ) ( k + 2 ) By partial fractions = 1 2 k = 1 n ( 3 k 4 k + 1 + 1 k + 2 ) = 1 2 k = 1 n ( 3 k 3 k + 1 1 k + 1 + 1 k + 2 ) = 1 2 ( 3 1 3 n + 1 1 2 + 1 n + 2 ) = 5 ( n + 1 ) ( n + 2 ) 6 ( n + 2 ) + 2 ( n + 1 ) 4 ( n + 1 ) ( n + 2 ) = 5 n 2 + 11 n 4 ( n + 1 ) ( n + 2 ) = 5 n 2 + 15 n + 10 4 n 10 4 ( n + 1 ) ( n + 2 ) = 5 ( n + 1 ) ( n + 2 ) 2 ( 2 n + 5 ) 4 ( n + 1 ) ( n + 2 ) = 5 4 2 n + 5 2 ( n + 1 ) ( n + 2 ) \begin{aligned} S & = \sum_{k=1}^n \frac {k+3}{k(k+1)(k+2)} & \small \color{#3D99F6} \text{By partial fractions} \\ & = \frac 12 \sum_{k=1}^n \left(\frac 3k - \frac 4{k+1} + \frac 1{k+2} \right) \\ & = \frac 12 \sum_{k=1}^n \left(\frac 3k - \frac 3{k+1} - \frac 1{k+1} + \frac 1{k+2} \right) \\ & = \frac 12 \left(\frac 31 - \frac 3{n+1} - \frac 12 + \frac 1{n+2} \right) \\ & = \frac {5(n+1)(n+2)-6(n+2)+2(n+1)}{4(n+1)(n+2)} \\ & = \frac {5n^2+11n}{4(n+1)(n+2)} \\ & = \frac {5n^2+15n+10-4n-10}{4(n+1)(n+2)} \\ & = \frac {5(n+1)(n+2)-2(2n+5)}{4(n+1)(n+2)} \\ & = \frac 54 - \frac {2n+5}{2(n+1)(n+2)} \end{aligned}

K = 5 4 \implies K = \boxed{\dfrac 54}

@Chew-Seong Cheong Sir , is there any method for solving this question using calculus also ? I am asking so because the question is tagged in Calculus.

Ankit Kumar Jain - 4 years ago

Log in to reply

I don't think so. It could be wrongly tagged.

Chew-Seong Cheong - 4 years ago

Log in to reply

Okay , thankyou for the reply. :) :)

Ankit Kumar Jain - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...