JEE Maths#5

Calculus Level 4

If f ( x ) = a e 2 x + b e x + c x f(x) = ae^{2x}+be^x+cx satisfies the conditions f ( 0 ) = 1 f(0) = -1 , f ( ln 2 ) = 31 f'(\ln 2) = 31 and 0 ln 4 ( f ( x ) c x ) d x = 39 2 \displaystyle \int_0^{\ln 4} (f(x)-cx) \ dx = \dfrac {39}2 , then which of the answer options is correct.


  • For more JEE problems try my set 1
  • For KVPY practice questions try my set 2
c = 10 c=10 c = 5 c=-5 a = 5 a= 5 a = 3 a=3 b = 4 b=-4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 30, 2017

f ( x ) = a e 2 x + b e x + c x f ( 0 ) = 1 . . . given a + b = 1 . . . ( 1 ) \begin{aligned} f(x) & = ae^{2x} + be^x + cx \\ f(0) & = - 1 & \small \color{#3D99F6} ... \text{given} \\ \implies a + b & = -1 & ...(1) \end{aligned}

f ( x ) = 2 a e 2 x + b e x + c f ( ln 2 ) = 31 . . . given 8 a + 2 b + c = 31 . . . ( 2 ) \begin{aligned} f'(x) & = 2ae^{2x} + be^x + c \\ f'(\ln 2) & = 31 & \small \color{#3D99F6} ... \text{given} \\ \implies 8a + 2b + c & = 31 & ...(2) \end{aligned}

0 ln 4 ( f ( x ) c x ) d x = 39 2 . . . given 0 ln 4 ( a e 2 x + b e x ) d x = 39 2 a e 2 x 2 + b e x 0 ln 4 = 39 2 8 a + 4 b a 2 b = 39 2 15 a + 6 b = 39 . . . ( 3 ) \begin{aligned} \int_0^{\ln 4} (f(x) - cx) \ dx & = \frac {39}2 & \small \color{#3D99F6} ... \text{given} \\ \int_0^{\ln 4} (ae^{2x}+be^x) \ dx & = \frac {39}2 \\ \frac {ae^{2x}}2 + be^x \ \bigg|_0^{\ln 4} & = \frac {39}2 \\ 8a+4b-\frac a2 - b & = \frac {39}2 \\ \implies 15a + 6b & = 39 &...(3) \end{aligned}

( 3 ) 6 ( 1 ) : ( 15 6 ) a = 39 + 6 a = 5 \begin{aligned} (3)-6(1): \quad (15-6)a & = 39+6 \\ \implies a & = 5 \end{aligned}

( 1 ) : 5 + b = 1 b = 6 \begin{aligned} (1): \quad 5+b & = -1\\ \implies b & = -6 \end{aligned}

( 2 ) : 8 ( 5 ) + 2 ( 6 ) + c = 31 c = 3 \begin{aligned} (2): \quad 8(5)+2(-6)+c & = 31 \\ \implies c & = 3 \end{aligned}

Therefore, the answer is a = 5 \boxed{a=5} .

Tapas Mazumdar
Mar 30, 2017

f ( 0 ) = 1 a e 0 + b e 0 + c ( 0 ) = 1 a + b = 1 ( ) \begin{aligned} & f(0) = -1 \\ \implies & ae^0 + be^0 + c(0) = -1 \\ \implies & a+b = -1 \qquad \color{#3D99F6} (*) \end{aligned}

\

f ( x ) = 2 a e 2 x + b e x + c f ( ln 2 ) = 2 a e 2 ln 2 + b e ln 2 + c = 31 f ( ln 2 ) = 8 a + 2 b + c = 31 ( ) \begin{aligned} & f'(x) = 2ae^{2x} + be^x + c \\ \implies & f'(\ln 2) = 2ae^{2 \ln 2} + be^{\ln 2} + c = 31 \\ \implies & f'(\ln 2) = 8a + 2b + c = 31 \qquad \color{#3D99F6} (**) \end{aligned}

\

0 ln 4 ( f ( x ) c x ) d x = 39 2 0 ln 4 ( a e 2 x + b e x ) d x = 39 2 a 2 [ e 2 x ] 0 ln 4 + b [ e x ] 0 ln 4 = 39 2 15 a 2 + 3 b = 39 2 5 a 2 + b = 13 2 ( ) \begin{aligned} & \displaystyle \int_0^{\ln 4} \left( f(x) - cx \right) \,dx = \dfrac{39}{2} \\ \implies & \int_0^{\ln 4} \left( ae^{2x} + be^x \right) \,dx = \dfrac{39}{2} \\ \implies & \dfrac{a}{2} \left[ e^{2x} \right] {\huge |}_0^{\ln 4} + b \left[ e^x \right] {\huge |}_0^{\ln 4} = \dfrac{39}{2} \\ \implies & \dfrac{15a}{2} + 3b = \dfrac{39}{2} \\ \implies & \dfrac{5a}{2} + b = \dfrac{13}{2} \qquad \color{#3D99F6} (***) \end{aligned}

\

Solving the system of three simultaneous linear equations ( ) \color{#3D99F6} (*) , ( ) \color{#3D99F6} (**) and ( ) \color{#3D99F6} (***) , we obtain

a = 5 b = 6 c = 3 \boxed{a = 5} \\ b = -6 \\ c = 3

Nice solution buddy... thanks

Rahil Sehgal - 4 years, 2 months ago

In the second line it should be a + b a+b = -1

Radhesh Luthra - 4 years, 2 months ago

Log in to reply

Yes, it should be a + b a+b = -1 as c ( x ) = 0 c(x) =0

Rahil Sehgal - 4 years, 2 months ago

Thanks for pointing out the typo. Made the changes.

Tapas Mazumdar - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...