JEE maths#6

Calculus Level 3

f ( x ) = ( x 1 ) 100 ( x 2 ) 2 ( 99 ) ( x 3 ) 3 ( 98 ) ( x 100 ) 100 \large f(x) = (x-1)^{100}(x-2)^{2(99)}(x-3)^{3(98)} \cdots (x-100)^{100}

For f ( x ) f(x) as defined above, if k = f ( 101 ) f ( 101 ) k = \dfrac {f'(101)}{f(101)} , find k 50 97 \dfrac k{50}-97 .


  • For more JEE problems try my set 1
  • For KVPY practice questions try my set 2


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 30, 2017

f ( x ) = ( x 1 ) 100 ( x 2 ) 2 ( 99 ) ( x 3 ) 3 ( 98 ) ( x 100 ) 100 = n = 1 100 ( x n ) n ( 101 n ) f ( x ) = f ( x ) n = 1 100 n ( 101 n ) x n See note. f ( x ) f ( x ) = n = 1 100 n ( 101 n ) x n k = n = 1 100 n ( 101 n ) 101 n = n = 1 100 n = 100 ( 101 ) 2 = 5050 \begin{aligned} f(x) & = (x-1)^{100}(x-2)^{2(99)}(x-3)^{3(98)} \cdots (x-100)^{100} \\ & = \prod_{n=1}^{100} (x-n)^{n(101-n)} \\ f'(x) & = f(x) \sum_{n=1}^{100} \frac {n(101-n)}{x-n} & \small \color{#3D99F6} \text{See note.} \\ \frac {f'(x)}{f(x)} & = \sum_{n=1}^{100} \frac {n(101-n)}{x-n} \\ \implies k & = \sum_{n=1}^{100} \frac {n(101-n)}{101-n} = \sum_{n=1}^{100} n = \frac {100(101)}2 = 5050 \end{aligned}

k 50 97 = 5050 50 97 = 4 \implies \dfrac k{50}-97 = \dfrac {5050}{50} - 97 = \boxed{4}


Note:

f ( x ) = 100 ( x 1 ) 99 ( x 2 ) 2 ( 99 ) ( x 3 ) 3 ( 98 ) ( x 100 ) 100 + ( x 1 ) 100 ( 2 ( 99 ) ) ( x 2 ) 2 ( 99 ) 1 ( x 3 ) 3 ( 98 ) ( x 100 ) 100 + ( x 1 ) 100 ( x 2 ) 2 ( 99 ) ( 3 ( 98 ) ) ( x 3 ) 3 ( 98 ) 1 ( x 100 ) 100 + + ( x 1 ) 100 ( x 2 ) 2 ( 99 ) ( x 3 ) 3 ( 98 ) 100 ( x 100 ) 99 = 100 x 1 ( x 1 ) 100 ( x 2 ) 2 ( 99 ) ( x 3 ) 3 ( 98 ) ( x 100 ) 100 + 2 ( 99 ) x 2 ( x 1 ) 100 ( x 2 ) 2 ( 99 ) ( x 3 ) 3 ( 98 ) ( x 100 ) 100 + 3 ( 98 ) x 3 ( x 1 ) 100 ( x 2 ) 2 ( 99 ) ( x 3 ) 3 ( 98 ) ( x 100 ) 100 + + 100 x 100 ( x 1 ) 100 ( x 2 ) 2 ( 99 ) ( x 3 ) 3 ( 98 ) ( x 100 ) 100 = 100 x 1 f ( x ) + 2 ( 99 ) x 2 f ( x ) + 3 ( 98 ) x 3 f ( x ) + + 100 x 100 f ( x ) = f ( x ) n = 1 100 n ( 101 n ) x n \small \begin{aligned} f'(x) & = {\color{#3D99F6}100(x-1)^{99}}(x-2)^{2(99)}(x-3)^{3(98)} \cdots (x-100)^{100} \\ & \quad + (x-1)^{100}{\color{#3D99F6}(2(99))(x-2)^{2(99)-1}}(x-3)^{3(98)} \cdots (x-100)^{100} \\ & \quad + (x-1)^{100}(x-2)^{2(99)}{\color{#3D99F6}(3(98))(x-3)^{3(98)-1}} \cdots (x-100)^{100} \\ & \quad + \cdots + (x-1)^{100}(x-2)^{2(99)}(x-3)^{3(98)} \cdots {\color{#3D99F6}100(x-100)^{99}} \\ & = {\color{#3D99F6}\frac{100}{x-1}(x-1)^{100}}(x-2)^{2(99)}(x-3)^{3(98)} \cdots (x-100)^{100} \\ & \quad + {\color{#3D99F6}\frac{2(99)}{x-2}}(x-1)^{100}{\color{#3D99F6}(x-2)^{2(99)}}(x-3)^{3(98)} \cdots (x-100)^{100} \\ & \quad + {\color{#3D99F6}\frac{3(98)}{x-3}}(x-1)^{100}(x-2)^{2(99)}{\color{#3D99F6}(x-3)^{3(98)}} \cdots (x-100)^{100} \\ & \quad + \cdots + {\color{#3D99F6}\frac{100}{x-100}}(x-1)^{100}(x-2)^{2(99)}(x-3)^{3(98)} \cdots {\color{#3D99F6}(x-100)^{100}} \\ & = {\color{#3D99F6}\frac{100}{x-1}}f(x) + {\color{#3D99F6}\frac{2(99)}{x-2}}f(x) + {\color{#3D99F6}\frac{3(98)}{x-3}}f(x) + \cdots + {\color{#3D99F6}\frac{100}{x-100}}f(x) \\ & = f(x) \sum_{n=1}^{100} \frac {n(101-n)}{x-n} \end{aligned}

Sir can you please explain how on differentiating f ( x ) f(x) the product sign changed to sum

Rahil Sehgal - 4 years, 2 months ago

Log in to reply

I have added a note. Hope that it helps.

Chew-Seong Cheong - 4 years, 2 months ago

Log in to reply

Thank you very much sir .... :)

Rahil Sehgal - 4 years, 2 months ago

We can also directly differentiate log f ( x ) \log{ f(x) } for lesser simplification

Sumanth R Hegde - 4 years, 2 months ago

Log in to reply

yep did that :)

Rohith M.Athreya - 4 years, 2 months ago

Yeah f'(x)/f(x) always makes me think of taking logs

Prakhar Bindal - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...