JEE Novice - (12)

Algebra Level 4

Given that

i = 1 2003 i 2 = ( 2003 ) ( 4007 ) ( 334 ) , \sum_{i=1}^{2003} i^2 = (2003)(4007)(334),

find the value of x x that satisfies

( 1 ) ( 2003 ) + ( 2 ) ( 2002 ) + ( 3 ) ( 2001 ) ( 2003 ) ( 1 ) = ( 2003 ) ( 334 ) ( x ) . (1)(2003) + (2)(2002)+ (3)(2001) \dots (2003)(1) = (2003)(334)(x).


The answer is 2005.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 27, 2015

It is given that i = 1 2003 i 2 = ( 2003 ) ( 4007 ) ( 334 ) \space \displaystyle \sum_{i=1}^{2003} {i^2} = (2003)(4007)(334) .

( 1 ) ( 2003 ) + ( 2 ) ( 2002 ) + ( 3 ) ( 2001 ) + . . . + ( 2003 ) ( 1 ) = i = 1 2003 [ i ( 2004 i ) ] = 2004 i = 1 2003 i i = 1 2003 i 2 = 2004 × ( 2003 ) ( 2004 ) 2 ( 2003 ) ( 4007 ) ( 334 ) = ( 2004 ) ( 2003 ) ( 1002 ) ( 2003 ) ( 4007 ) ( 334 ) = ( 2004 ) ( 2003 ) ( 334 ) ( 3 ) ( 2003 ) ( 4007 ) ( 334 ) = ( 2003 ) ( 334 ) ( 6012 4007 ) = ( 2003 ) ( 334 ) ( 2005 ) = ( 2003 ) ( 334 ) x (1)(2003)+(2)(2002)+(3)(2001)+...+(2003)(1) \\ = \displaystyle \sum_{i=1}^{2003} {\left[ i(2004-i) \right]} = 2004 \sum_{i=1}^{2003} {i} - \sum_{i=1}^{2003} {i^2} \\ = 2004\times \dfrac{(2003)(2004)}{2} - (2003)(4007)(334) \\ = (2004)(2003)(1002) - (2003)(4007)(334) \\ = (2004)(2003)(334)(3) - (2003)(4007)(334) \\ = (2003)(334)(6012-4007) \\ = (2003)(334)(2005) \\ = (2003)(334)x

x = 2005 \Rightarrow x = \boxed{2005}

Moderator note:

Simple standard approach

Exactly the same approach by me

Ravi Dwivedi - 5 years, 11 months ago
Alan Yan
Nov 26, 2016

Observe that x ( 1 x ) 2 = x + 2 x + 3 x 2 + . . . \frac{x}{(1-x)^2} = x + 2x + 3x^2 + ... .

The expression 1 ( 2003 ) + 2 ( 2002 ) + . . . + ( 2003 ) ( 1 ) 1(2003) + 2(2002) + ... + (2003)(1) is the coefficient of x 2004 x^{2004} in the polynomial x ( 1 x ) 2 x ( 1 x ) 2 = x 2 ( 1 x ) 4 . \frac{x}{(1-x)^2} \cdot \frac{x}{(1-x)^2} = \frac{x^2}{(1-x)^4}.

But, x 2 ( 1 x ) 4 = x 2 n 0 ( n + 3 3 ) x n \frac{x^2}{(1-x)^4} = x^2\sum_{n \geq 0} \binom{n+3}{3} x^n so the desired coefficient is ( 2005 3 ) \binom{2005}{3} . Thus, we have ( 2003 ) ( 334 ) x = ( 2005 3 ) = 2005 334 2003 x = 2005 (2003)(334)x = \binom{2005}{3} = 2005 \cdot 334 \cdot 2003 \implies \boxed{x = 2005}

Great to see you back! +1

Nihar Mahajan - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...