JEE Novice - (14)

Geometry Level 3

tan ( 107 n ) = cos 9 6 + sin 9 6 cos 9 6 sin 9 6 \Large \tan (107n)^{\circ} = \dfrac{\cos 96^{\circ} + \sin 96^{\circ}}{\cos 96^{\circ} - \sin 96^{\circ}}

Find the smallest positive integer n n that satisfies the above equation.


This question is a part of JEE Novices .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 27, 2015

cos 9 6 + sin 9 6 cos 9 6 sin 9 6 = 1 2 cos 9 6 + 1 2 sin 9 6 1 2 cos 9 6 1 2 sin 9 6 = sin 4 5 cos 9 6 + cos 4 5 sin 9 6 cos 4 5 cos 9 6 sin 4 5 sin 9 6 = sin 14 1 cos 14 1 = tan 14 1 = tan ( 14 1 + 18 0 ) = tan 32 1 = tan ( 10 7 × 3 ) n = 3 \begin{aligned} \dfrac{\cos{96^\circ}+\sin{96^\circ}}{\cos{96^\circ}-\sin{96^\circ}} & = \frac{\frac{1}{\sqrt{2}} \cos{96^\circ}+\frac{1}{\sqrt{2}} \sin{96^\circ}}{\frac{1}{\sqrt{2}} \cos{96^\circ}-\frac{1}{\sqrt{2}} \sin{96^\circ}} \\ & = \frac{\sin{45^\circ} \cos{96^\circ}+\cos{45^\circ} \sin{96^\circ}}{\cos{45^\circ} \cos{96^\circ}-\sin{45^\circ} \sin{96^\circ}} \\ & = \dfrac {\sin{141^\circ}}{\cos{141^\circ}} = \tan{141^\circ} = \tan{(141^\circ+180^\circ)} \\ & = \tan{321^\circ} = \tan{(107^\circ\times 3)} \\ \Rightarrow n & = \boxed{3} \end{aligned}

Moderator note:

More generally (in a similar manner as shown above),

tan ( 4 5 + α ) = cos α + sin α cos α sin α . \tan ( 45 ^ \circ + \alpha) = \frac{ \cos \alpha + \sin \alpha } { \cos \alpha - \sin \alpha } .

Since tan 32 1 = tan ( 3 9 ) \tan{321^\circ} = \tan{(-39^\circ)} , n n can be a negative real number and does not have a defined minimum. It must be specified as an integer.

Chew-Seong Cheong - 6 years ago

Log in to reply

If n is an integer , it does not have a minimum value. As (321-180*107k) can be equal to 107n for every integer k. it must be said that n is a natural number

Srikeshav Kothapalli - 6 years ago

Log in to reply

Yes, I was thinking about it.

Chew-Seong Cheong - 6 years ago
Ravi Dwivedi
Jul 5, 2015

Moderator note:

Good observation with the tangent sum and product formula.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...