⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ x 1 + y 1 = 3 1 x 1 + z 1 = 5 1 y 1 + z 1 = 7 1
If x , y , z satisfy the system above , find the value of the ratio y z .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
There's a slightly easier solution without finding the value of x . Hint: Add them all up.
x 1 + y 1 = 3 1 . . . ( 1 )
x 1 + z 1 = 5 1 . . . ( 2 )
y 1 + z 1 = 7 1 . . . ( 3 )
Adding all 3 equations gives:
x 2 + y 2 + z 2 = 1 0 5 7 1
x 1 + y 1 + z 1 = 2 1 0 7 1
E q u a t i o n 1 ⇒ z 1 = 2 1 0 1
E q u a t i o n 2 ⇒ y 1 = 2 1 0 2 9
z 1 y 1 = 2 1 0 2 9 2 1 0 1
y z = 2 9
As Challenge Master noted, here's an alternative solution which doesn't require finding the value of any of the unknowns.
y z = z − 1 y − 1 = 2 z − 1 2 y − 1 = [ ( y − 1 + z − 1 ) − ( x − 1 + y − 1 ) + ( x − 1 + z − 1 ) ] [ ( y − 1 + z − 1 ) − ( x − 1 + z − 1 ) + ( x − 1 + y − 1 ) ] = 7 − 1 − 3 − 1 + 5 − 1 7 − 1 − 5 − 1 + 3 − 1 = 1 0 5 ( 7 − 1 − 3 − 1 + 5 − 1 ) 1 0 5 ( 7 − 1 − 5 − 1 + 3 − 1 ) = 1 5 − 3 5 + 2 1 1 5 − 2 1 + 3 5 = 1 2 9 = 2 9
Yes, the faster way is to treat x 1 , y 1 , z 1 as variables a , b , c and solve the system of linear equations. This approach of choosing the correct variables can simplify the working.
Problem Loading...
Note Loading...
Set Loading...
⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ x 1 + y 1 = 3 1 x 1 + z 1 = 5 1 y 1 + z 1 = 7 1 . . . ( 1 ) . . . ( 2 ) . . . ( 3 )
Eq.1 + Eq.2 − Eq.3: x 2 = 3 1 + 5 1 − 7 1 ⇒ x 1 = 2 1 0 4 1
Eq.1: y 1 = 3 1 − 2 1 0 4 1 ⇒ y 1 = 2 1 0 2 9
Eq.2: z 1 = 5 1 − 2 1 0 4 1 ⇒ z 1 = 2 1 0 1
⇒ y z = 2 9 2 1 0 2 1 0 = 2 9