JEE Novice - (31)

Geometry Level 4

A straight line given by 3 x + 2 y = 6 3x+2y=6 intersects x x axis and y y axis at A , B A,B respectively.If the distance between the incentre and orthocentre of Δ O A B \Delta OAB can be expressed in the form a b c + d \dfrac{a\sqrt{b}}{c+\sqrt{d}} , find a + b + c + d a+b+c+d where b , d b,d are square free.


This question is a part of JEE Novices .


The answer is 26.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tanishq Varshney
May 28, 2015

clearly orthocenter is ( 0 , 0 (0,0

magnitude of inradius, which is radius of incircle of Δ O A B \Delta OAB and incenter denoted by I I

P I = Q I = r = ( s o ) t a n ( O 2 ) PI=QI=r=(s-o) tan(\frac{O}{2})

where o = 13 , b = 2 , a = 3 o=\sqrt{13},~b=2,~a=3 note that o o is the length of side facing O O , b b is the length of side facing B B and a a is the length of side facing A A

angle A O B = 9 0 o AOB=90^{o}

r = 5 13 2 r=\frac{5-\sqrt{13}}{2}

We have to find O I OI

Clearly by pythagoras theorem

O I = P I 2 + O P 2 = P I 2 + Q I 2 OI=\sqrt{PI^{2}+OP^{2}}=\sqrt{PI^{2}+QI^{2}}

O I = 2 P I = 2 r OI=\sqrt{2} PI=\sqrt{2} r

O I = 2 ( 5 13 2 ) OI=\sqrt{2}(\frac{5-\sqrt{13}}{2})

On rationalising and simplifying

O I = 6 2 5 + 13 \huge{\boxed{OI=\frac{6\sqrt{2}}{5+\sqrt{13}}}}

sorry guys there is a small typo in the diagram the coordinate is ( 0 , 3 ) (0,3)

Tanishq Varshney - 6 years ago

A very nice solution from Tanishq. An upvote for that.

I, here, have the standard JEE approach.

Let the vertices of the triangle formed be A ( 0 , 0 ) , B ( 0 , 3 ) , C ( 2 , 0 ) A(0,0) , B(0,3) , C(2,0) and the sides opposite to them be a = 13 , b = 2 , c = 3 a = \sqrt{13} , b = 2 , c = 3 respectively.

The coordinates of the incentre of a triangle whose vertex coordinates are A ( x 1 , y 1 ) , B ( x 2 , y 2 ) , C ( x 3 , y 3 ) A(x_1,y_1) , B(x_2,y_2) , C(x_3,y_3) is

( a x 1 + b x 2 + c x 3 a + b + c , a y 1 + b y 2 + c y 3 a + b + c ) (\dfrac{ax_1 + bx_2 + cx_3}{a+b+c} , \dfrac{ay_1 + by_2 + cy_3}{a+b+c} )

Using the above formula we get,

I = ( 6 5 + 13 , 6 5 + 13 ) I = (\dfrac{6}{5+\sqrt{13}}, \dfrac{6}{5+\sqrt{13}})

Orthocentre of a righta-triangle is the vertex opposite to the Hypotenuse.

Hence the distance is(using distance formula)

6 2 5 + 13 \dfrac{6\sqrt{2}}{5 + \sqrt{13}}

3 x + 2 y = 6 , X 2 + y 3 = 1 T h e v e r t i c e s a r e ( 0 , 3 ) , ( 0 , 0 ) , ( 2 , 0 ) . S i d e s 3 2 13 . i n r a d i u s , r = 2 3 2 + 3 + 13 . S o r ( 2 3 2 + 3 + 13 , 2 3 2 + 3 + 13 ) . O r t h o c e n t e r i s t h e v e r t e x w i t h 9 0 o , t h a t i s ( 0 , 0 ) . S o t h e d i s t a n c e = ( 2 3 2 + 3 + 13 0 ) 2 + ( 2 3 2 + 3 + 13 0 ) 2 S o t h e d i s t a n c e = 6 2 5 + 13 = a b c + d . a + b + c + d = 6 + 2 + 5 + 13 = 26. 3x+2y=6,~~\implies~\dfrac X 2+\dfrac y 3=1\\ \therefore~The~vertices~are~(0,3),~(0,0),~(2,0).\\ Sides~3-2-\sqrt{13}. \implies~inradius, r=\dfrac{2*3}{2+3+\sqrt{13}}.\\ So~r \left (\dfrac{2*3}{2+3+\sqrt{13}},\dfrac{2*3}{2+3+\sqrt{13}} \right ).\\ Orthocenter ~is~the~vertex~with~90^o,~that~is~(0,0).\\ So~the~distance~=\sqrt{ \left ( \dfrac{2*3}{2+3+\sqrt{13}}-0 \right )^2+\left (\dfrac{2*3}{2+3+\sqrt{13}}-0 \right )^2}\\ So~the~distance~=\dfrac{6\sqrt2}{5+\sqrt{13}}=\dfrac{a\sqrt b}{c+\sqrt{d}}.\\ a+b+c+d=6+2+5+13=\Large~~\color{#D61F06}{26}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...