For natural number, denote P n = r = 1 ∏ n 6 r 2 + 7 r − 5 6 r 2 + r − 1
What is the value of n → ∞ lim 1 0 9 ( n + 1 ) P n ?
Also try this
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
P n = r = 1 ∏ n 6 r 2 + 7 r − 5 6 r 2 + r − 1 = r = 1 ∏ n ( 3 r + 5 ) ( 2 r − 1 ) ( 3 r − 1 ) ( 2 r + 1 ) Notice that ( 2 ( r + 1 ) − 1 ) = ( 2 r + 1 ) , ( 3 ( r + 1 ) + 5 ) = ( 3 r − 1 ) ∴ P n = 1 0 ⋅ ( 3 n + 2 ) ( 3 n + 5 ) 2 n + 1 ∴ The original formula = n → ∞ lim 1 0 9 ( ( 3 n + 2 ) ( 3 n + 5 ) ( n + 1 ) ( 2 n + 1 ) ) = 9 n → ∞ lim 9 n 2 + 2 1 n + 1 0 2 n 2 + 3 n + 1 According to L’Hospital’s rule, the original formula = 9 n → ∞ lim ( 9 n 2 + 2 1 n + 1 0 ) ′ ′ ( 2 n 2 + 3 n + 1 ) ′ ′ = 9 n → ∞ lim 1 8 4 = 9 × 9 2 = 2
Problem Loading...
Note Loading...
Set Loading...
P n = Π r = 1 n 6 r 2 + 7 r − 5 6 r 2 + r − 1 = Π r = 1 n ( 3 r + 5 ) ( 2 r − 1 ) ( 3 r − 1 ) ( 2 r + 1 ) = 8 × 1 2 × 3 × 1 1 × 3 5 × 5 × 1 4 × 5 8 × 7 × 1 7 × 7 1 1 × 9 × . . . × ( 3 n + 5 ) ( 2 n − 1 ) ( 3 n − 1 ) ( 2 n + 1 ) = 2 × 5 × 3 n + 2 1 × 3 n + 5 2 n + 1 = ( 3 n + 2 ) ( 3 n + 5 ) 1 0 ( 2 n + 1 )
n → ∞ lim 1 0 9 ( n + 1 ) P n = n → ∞ lim 1 0 9 ( n + 1 ) ( 3 n + 2 ) ( 3 n + 5 ) 1 0 ( 2 n + 1 ) = n → ∞ lim ( 3 n + 2 ) ( 3 n + 5 ) 9 ( n + 1 ) ( 2 n + 1 ) = n → ∞ lim 9 n 2 + 2 1 n + 1 0 9 ( 2 n 2 + 3 n + 1 ) = n → ∞ lim 9 n 2 + 2 1 n + 1 0 2 ( 9 n 2 + 1 3 . 5 n + 4 . 5 ) = 2