JEE practice!

Calculus Level 2

For natural number, denote P n = r = 1 n 6 r 2 + r 1 6 r 2 + 7 r 5 P_n = \displaystyle\prod_{r=1}^n \dfrac{6r^2+r-1}{6r^2+7r-5}

What is the value of lim n 9 10 ( n + 1 ) P n \displaystyle \lim_{n \to \infty} \frac {9}{10} (n+1) P_n ?

Also try this


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

P n = Π r = 1 n 6 r 2 + r 1 6 r 2 + 7 r 5 = Π r = 1 n ( 3 r 1 ) ( 2 r + 1 ) ( 3 r + 5 ) ( 2 r 1 ) = 2 × 3 8 × 1 × 5 × 5 11 × 3 × 8 × 7 14 × 5 × 11 × 9 17 × 7 × . . . × ( 3 n 1 ) ( 2 n + 1 ) ( 3 n + 5 ) ( 2 n 1 ) = 2 × 5 × 1 3 n + 2 × 2 n + 1 3 n + 5 = 10 ( 2 n + 1 ) ( 3 n + 2 ) ( 3 n + 5 ) \displaystyle \begin{aligned} P_n & = \Pi _{r=1} ^n \dfrac {6r^2+r-1} {6r^2+7r-5} \\ & = \Pi _{r=1} ^n \dfrac {(3r-1)(2r+1)} {(3r+5)(2r-1)}\\ & = \dfrac {2 \times 3}{8 \times 1} \times \dfrac {5 \times 5}{11 \times 3} \times \dfrac {8 \times 7}{14 \times 5} \times \dfrac {11 \times 9}{17 \times 7} \times ... \times \dfrac {(3n-1)(2n+1)} {(3n+5)(2n-1)} \\ & = 2\times 5 \times \dfrac {1} {3n+2} \times \dfrac {2n+1} {3n+5} \\ & = \dfrac {10(2n+1)} {(3n+2)(3n+5)} \end{aligned}

lim n 9 10 ( n + 1 ) P n = lim n 9 10 ( n + 1 ) 10 ( 2 n + 1 ) ( 3 n + 2 ) ( 3 n + 5 ) = lim n 9 ( n + 1 ) ( 2 n + 1 ) ( 3 n + 2 ) ( 3 n + 5 ) = lim n 9 ( 2 n 2 + 3 n + 1 ) 9 n 2 + 21 n + 10 = lim n 2 ( 9 n 2 + 13.5 n + 4.5 ) 9 n 2 + 21 n + 10 = 2 \displaystyle \begin{aligned} \lim _{n \rightarrow \infty} \dfrac {9}{10}(n+1)P_n & = \lim _{n \rightarrow \infty} \dfrac {9}{10}(n+1) \dfrac {10(2n+1)} {(3n+2)(3n+5)} \\ & = \lim _{n \rightarrow \infty} \dfrac {9(n+1)(2n+1)} {(3n+2)(3n+5)} \\ & = \lim _{n \rightarrow \infty} \dfrac {9(2n^2+3n+1)} {9n^2+21n+10}\\ & = \lim _{n \rightarrow \infty} \dfrac {2(9n^2+13.5n+4.5)} {9n^2+21n+10}\\ & = \boxed{2} \end{aligned}

Bratch Kroy
Jun 12, 2021

P n = r = 1 n 6 r 2 + r 1 6 r 2 + 7 r 5 = r = 1 n ( 3 r 1 ) ( 2 r + 1 ) ( 3 r + 5 ) ( 2 r 1 ) Notice that ( 2 ( r + 1 ) 1 ) = ( 2 r + 1 ) , ( 3 ( r + 1 ) + 5 ) = ( 3 r 1 ) P n = 10 2 n + 1 ( 3 n + 2 ) ( 3 n + 5 ) The original formula = lim n 9 10 ( ( n + 1 ) ( 2 n + 1 ) ( 3 n + 2 ) ( 3 n + 5 ) ) = 9 lim n 2 n 2 + 3 n + 1 9 n 2 + 21 n + 10 According to L’Hospital’s rule, the original formula = 9 lim n ( 2 n 2 + 3 n + 1 ) ( 9 n 2 + 21 n + 10 ) = 9 lim n 4 18 = 9 × 2 9 = 2 \begin{aligned} &\begin{aligned} P_n&=\prod_{r=1}^n\frac{6r^2+r-1}{6r^2+7r-5}\\ &=\prod_{r=1}^n\frac{(3r-1)(2r+1)}{(3r+5)(2r-1)} \end{aligned}\\ &\text{Notice that} (2(r+1)-1)=(2r+1),\ (3(r+1)+5)=(3r-1)\\ &\therefore P_n=10\cdot\frac{2n+1}{(3n+2)(3n+5)}\\ &\begin{aligned} \therefore\text{The original formula}&=\lim_{n\to\infty}\frac{9}{10}\left(\frac{(n+1)(2n+1)}{(3n+2)(3n+5)}\right)\\ &=9\lim_{n\to\infty}\frac{2n^2+3n+1}{9n^2+21n+10}\\ \end{aligned}\\ &\begin{aligned} \text{According to L'Hospital's rule, the original formula}&=9\lim_{n\to\infty}\frac{(2n^2+3n+1)''}{(9n^2+21n+10)''}\\ &=9\lim_{n\to\infty}\frac{4}{18}\\ &=9\times\frac{2}{9}\\ &=2 \end{aligned} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...