JEE Probability 2

A dice is rolled 6 times. The probability that number of times prime numbers appears is more than number of times an even number appears is γ \gamma . Calculate 1000 γ \lfloor 1000\gamma\rfloor .

This problem is a part of My picks for JEE 1


The answer is 403.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Adit Mohan
Feb 5, 2015

notice that 2 is both prime and even hence it won't support either.
let c = primes - even.
thus 3,5 increase c by 1.
4 and 6 decrease c by 1.
1 and 2 do not change c. all the three groups have equal elements and hence equal probability. consider the generating function .. ( 1 x ( \frac{1}{x} +1 +x) 6 ^{6} .
in its expansion the sum ofs coefficient of negative powers will give the no of cases where c is negative , the constant term the no of cases where c=0 and the sum of coefficients of positive terms the no of cases where c is positive.
required probability is the no of cases where c is positive divided by total no of cases.
solving the generating function can be made easier by noticing that coefficients of negative powers = coefficients of positive powers. solving we have.
probability=294/3^6=294/729.


This is arguably one of the most beautiful questions that I've had the honor of solving and one of the most beautiful solutions that I've had the honor of finding myself. Looks like someone just beat me to it :/ But anyway, thanks!

Raghav Vaidyanathan - 6 years, 4 months ago

Extremely elegant.

Kunal Verma - 6 years, 1 month ago

Let a roll 1 or 2 be called a a (neutral event). Let a roll 3 or 5 be called b b (increases the number of primes) Let a roll 4 or 6 be called c c (increases the number of even numbers) Then we have to find the number of ways we can arrange the letters a, b & c such that N ( b ) > N ( c ) N(b) > N(c) . To me that yields: All b's : ( 6 6 2 0 ) 6 \choose 6 \cdot 2^0 5 b's, 1 either a or c : ( 6 5 2 1 ) 6 \choose 5 \cdot 2^1 4 b's, 2 either a or c : ( 6 4 2 2 ) 6 \choose 4 \cdot 2^2 3 b's, at most 2 c's : 6 \choose 3 \cdot (2^3 - 3 \choose 3) 2 b's, at most 1 c : 6 \choose 2 \cdot ( 4 \choose 1 + 4 \choose 0) 1 b, 0 c's : 6 \choose 1 \cdot ( 5 \choose 0) . Adding all those ways together and dividing my the total number of ways the letters a, b & c can be arranged in a string of length 6 yields (\ \gamma = \frac{294}{3^6)=0.3827 )

Kai Ott - 4 years, 7 months ago

Log in to reply

Oh dammit, can one not edit comments hahaha 😂

Kai Ott - 4 years, 7 months ago
Laurent Shorts
Feb 18, 2017
prime not prime
even 2 : 1 6 {\color{#20A900} 2}: \frac{1}{6} 4 , 6 : 1 3 {\color{#CEBB00}4,6}: \frac{1}{3}
not even 3 , 5 : 1 3 {\color{#3D99F6}3,5}: \frac{1}{3} 1 : 1 6 {\color{#D61F06}1}: \frac{1}{6}

Let M p Mp the odds of having more primes than even numbers, M e Me the odds of having more even numbers than primes, and E q Eq the odds of having as much primes as even numbers. We have of course M p + M e + E q = 1 Mp+Me+Eq=1 .

As there's a symmetry in the odds, M p = M e Mp=Me , which gives M p = 1 E q 2 Mp=\dfrac{1-Eq}{2} . So, instead of summing probabilities on all 21 cases where there's more primes than even numbers, it's easier to sum the 7 cases for E q Eq .

subcases ( {\color{#20A900}\bullet} =both prime and even, {\color{#D61F06}\bullet} =not prime nor even)
0 even {\color{#CEBB00}\text{even}} , 0 prime {\color{#3D99F6}\text{prime}} ( 6 6 ) 1 6 6 = 1 6 6 \begin{array}{c}~{\color{#D61F06}\bullet\bullet\bullet\bullet\bullet\bullet} & {6\choose6}\frac{1}{6^6}~=\mathbf{\frac{1}{6^6}} \end{array}
1 even {\color{#CEBB00}\text{even}} , 1 prime {\color{#3D99F6}\text{prime}} ( 6 1 , 5 ) 1 6 1 1 6 5 = 6 6 6 ( 6 1 , 1 , 4 ) 1 3 1 1 3 1 1 6 4 = 120 6 6 \begin{array}{c}~{\color{#20A900}\bullet}~{\color{#D61F06}\bullet\bullet\bullet\bullet\bullet} & {6\choose1,5}·\frac{1}{6^1}·\frac{1}{6^5}~=\mathbf{\frac{6}{6^6}} \\ {\color{#CEBB00}\bullet}~{\color{#3D99F6}\bullet}~{\color{#D61F06}\bullet\bullet\bullet\bullet} & {6\choose1,1,4}·\frac{1}{3^1}·\frac{1}{3^1}·\frac{1}{6^4}~=\mathbf{\frac{120}{6^6}} \end{array}
2 even {\color{#CEBB00}\text{even}} , 2 primes {\color{#3D99F6}\text{primes}} ( 6 2 , 4 ) 1 6 2 1 6 4 = 15 6 6 ( 6 1 , 1 , 1 , 3 ) 1 6 1 1 3 1 1 3 1 1 6 3 = 480 6 6 ( 6 2 , 2 , 2 ) 1 3 2 1 3 2 1 6 2 = 1 440 6 6 \begin{array}{c}~{\color{#20A900}\bullet\bullet}~{\color{#D61F06}\bullet\bullet\bullet\bullet} & {6\choose2,4}·\frac{1}{6^2}·\frac{1}{6^4}~=\mathbf{\frac{15}{6^6}} \\ {\color{#20A900}\bullet}~{\color{#CEBB00}\bullet}~{\color{#3D99F6}\bullet}~{\color{#D61F06}\bullet\bullet\bullet} & {6\choose1,1,1,3}·\frac{1}{6^1}·\frac{1}{3^1}·\frac{1}{3^1}·\frac{1}{6^3}~=\mathbf{\frac{480}{6^6}} \\ {\color{#CEBB00}\bullet\bullet}~{\color{#3D99F6}\bullet\bullet}~{\color{#D61F06}\bullet\bullet} & {6\choose2,2,2}·\frac{1}{3^2}·\frac{1}{3^2}·\frac{1}{6^2}~=\mathbf{\frac{1'440}{6^6}} \end{array}
3 even {\color{#CEBB00}\text{even}} , 3 primes {\color{#3D99F6}\text{primes}} ( 6 3 , 3 ) 1 6 3 1 6 3 = 20 6 6 ( 6 2 , 1 , 1 , 2 ) 1 6 2 1 3 1 1 3 1 1 6 2 = 720 6 6 ( 6 1 , 2 , 2 , 1 ) 1 6 1 1 3 2 1 3 2 1 6 1 = 2 880 6 6 ( 6 3 , 3 ) 1 3 3 1 3 3 = 1 280 6 6 \begin{array}{c}~{\color{#20A900}\bullet\bullet\bullet}~{\color{#D61F06}\bullet\bullet\bullet} & {6\choose3,3}·\frac{1}{6^3}·\frac{1}{6^3}~=\mathbf{\frac{20}{6^6}} \\ {\color{#20A900}\bullet\bullet}~{\color{#CEBB00}\bullet}~{\color{#3D99F6}\bullet}~{\color{#D61F06}\bullet\bullet} & {6\choose2,1,1,2}·\frac{1}{6^2}·\frac{1}{3^1}·\frac{1}{3^1}·\frac{1}{6^2}~=\mathbf{\frac{720}{6^6}} \\ {\color{#20A900}\bullet}~{\color{#CEBB00}\bullet\bullet}~{\color{#3D99F6}\bullet\bullet}~{\color{#D61F06}\bullet} & {6\choose1,2,2,1}·\frac{1}{6^1}·\frac{1}{3^2}·\frac{1}{3^2}·\frac{1}{6^1}~=\mathbf{\frac{2'880}{6^6}} \\ {\color{#CEBB00}\bullet\bullet\bullet}~{\color{#3D99F6}\bullet\bullet\bullet} & {6\choose3,3}·\frac{1}{3^3}·\frac{1}{3^3}~=\mathbf{\frac{1'280}{6^6}} \end{array}
4 even {\color{#CEBB00}\text{even}} , 4 primes {\color{#3D99F6}\text{primes}} ( 6 4 , 2 ) 1 6 4 1 6 2 = 15 6 6 ( 6 3 , 1 , 1 , 1 ) 1 6 3 1 3 1 1 3 1 1 6 1 = 480 6 6 ( 6 2 , 2 , 2 ) 1 6 2 1 3 2 1 3 2 = 1 440 6 6 \begin{array}{c}~{\color{#20A900}\bullet\bullet\bullet\bullet}~{\color{#D61F06}\bullet\bullet} & {6\choose4,2}·\frac{1}{6^4}·\frac{1}{6^2}~=\mathbf{\frac{15}{6^6}} \\ {\color{#20A900}\bullet\bullet\bullet}~{\color{#CEBB00}\bullet}~{\color{#3D99F6}\bullet}~{\color{#D61F06}\bullet} & {6\choose3,1,1,1}·\frac{1}{6^3}·\frac{1}{3^1}·\frac{1}{3^1}·\frac{1}{6^1}~=\mathbf{\frac{480}{6^6}} \\ {\color{#20A900}\bullet\bullet}~{\color{#CEBB00}\bullet\bullet}~{\color{#3D99F6}\bullet\bullet} & {6\choose2,2,2}·\frac{1}{6^2}·\frac{1}{3^2}·\frac{1}{3^2}~=\mathbf{\frac{1'440}{6^6}} \end{array}
5 even {\color{#CEBB00}\text{even}} , 5 primes {\color{#3D99F6}\text{primes}} ( 6 5 , 1 ) 1 6 5 1 6 1 = 6 6 6 ( 6 4 , 1 , 1 ) 1 6 4 1 3 1 1 3 1 = 120 6 6 \begin{array}{c}~{\color{#20A900}\bullet\bullet\bullet\bullet\bullet}~{\color{#D61F06}\bullet} & {6\choose5,1}·\frac{1}{6^5}·\frac{1}{6^1}~=\mathbf{\frac{6}{6^6}} \\ {\color{#20A900}\bullet\bullet\bullet\bullet}~{\color{#CEBB00}\bullet}~{\color{#3D99F6}\bullet} & {6\choose4,1,1}·\frac{1}{6^4}·\frac{1}{3^1}·\frac{1}{3^1}~=\mathbf{\frac{120}{6^6}} \end{array}
6 even {\color{#CEBB00}\text{even}} , 6 primes {\color{#3D99F6}\text{primes}} ( 6 6 ) 1 6 6 = 1 6 6 \begin{array}{c}~{\color{#20A900}\bullet\bullet\bullet\bullet\bullet\bullet} & {6\choose6}·\frac{1}{6^6}~=\mathbf{\frac{1}{6^6}} \end{array}

Total is E q = 9 024 6 6 = 47 243 Eq=\dfrac{9'024}{6^6}=\dfrac{47}{243} , so M p = 1 2 ( 1 47 243 ) = 98 243 = 0.403292... \boxed{Mp=\frac{1}{2}\left(1-\frac{47}{243}\right)=\dfrac{98}{243}}=0.403292... .


Notation: ( n p 1 , p 2 , , p k ) = n p 1 ! p 2 ! p k ! {n \choose p_1,p_2,\cdot,p_k}=\dfrac{n}{p_1!·p_2!·\cdots·p_k!} is the multinomial coefficient , which counts the ways to display n = p 1 + p 2 + + p k n=p_1+p_2+\cdots+p_k elements when there is k k groups of p 1 , , p k p_1,\cdots,p_k identical elements.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...