JEE Problem

Algebra Level 5

{ a 1 = 15 27 2 a 2 > 0 a k = 2 a k 1 a k 2 for k = 3 , 4 , , 11 \begin{cases} a_{1} = 15 \\ 27-2a_{2} > 0 \\ a_{k} = 2a_{k-1} - a_{k-2} & \text{for } k=3, 4,\ldots, 11 \end{cases}

Let a 1 , a 2 , , a 11 a_{1}, a_{2}, \ldots , a_{11} be real numbers satisfying the conditions above. If a 1 2 + a 2 2 + a 3 2 + + a 11 2 11 = 90 \dfrac{a_1^2 +a_2^2+a_3^2 +\cdots + a_{11}^2}{11} = 90 , then find a 1 + a 2 + a 3 + + a 11 11 \dfrac {a_1 +a_2+a_3 + \cdots + a_{11}}{11} .

0 11 1 13.5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 15, 2016

Using characteristic equation as mention by Challenge Master.

From the linear recurrence relation a k = 2 a k 1 a k 2 a_k = 2a_{k-1} - a_{k-2} , we have the characteristic equation x 2 2 x + 1 = 0 x^2-2x +1 = 0 with repeated root of x = 1 x=1 and the general solution of a n = c 1 + c 2 n a_n = c_1 + c_2n .

{ a 1 = c 1 + c 2 = 15 . . . ( 1 ) a 2 = c 1 + 2 c 2 . . . ( 2 ) \implies \begin{cases} a_1 = c_1 + c_2 = 15 & ...(1) \\ a_2 = c_1 + 2c_2 & ...(2) \end{cases}

( 2 ) ( 1 ) : a 2 15 = c 2 c 2 = a 2 15 ( 1 ) : c 1 + a 2 15 = 15 c 1 = 30 a 2 a n = 30 a 2 + n ( a 2 15 ) = ( n 1 ) a 2 15 ( n 2 ) \begin{aligned} (2)-(1): \quad a_2 - 15 & = c_2 \\ \implies c_2 & = a_2 -15 \\ (1): \quad c_1 +a_2 -15 & = 15 \\ \implies c_1 & = 30 - a_2 \\ \implies a_n & = 30 - a_2 + n(a_2 -15) \\ & = (n-1)a_2 - 15(n-2) \end{aligned}

From a n = ( n 1 ) a 2 15 ( n 2 ) a_n = (n-1)a_2 - 15(n-2) , we have:

n = 1 11 a n 2 = n = 1 11 [ ( n 1 ) a 2 15 ( n 2 ) ] 2 = n = 0 10 [ n a 2 15 ( n 1 ) ] 2 = n = 0 10 [ ( a 2 15 ) 2 n 2 + 30 ( a 2 15 ) n + 225 ] = 10 ( 11 ) ( 21 ) 6 ( a 2 15 ) 2 + 10 ( 11 ) 2 30 ( a 2 15 ) + 11 ( 225 ) = 11 ( 35 ( a 2 15 ) 2 + 150 ( a 2 15 ) + 225 ) \begin{aligned} \sum_{n=1}^{11} a_n^2 & = \sum_{n=1}^{11} [(n-1)a_2-15(n-2)]^2 \\ & = \sum_{n=0}^{10} [na_2-15(n-1)]^2 \\ & = \sum_{n=0}^{10} [(a_2-15)^2n^2 + 30(a_2-15)n + 225] \\ & = \frac {10(11)(21)}6 \cdot (a_2-15)^2 + \frac {10(11)}2 \cdot 30(a_2-15) + 11(225) \\ & = 11 \left(35(a_2-15)^2 +150 (a_2-15) + 225 \right) \end{aligned}

Now, we have:

1 11 n = 1 11 a n 2 = 90 35 ( a 2 15 ) 2 + 150 ( a 2 15 ) + 225 = 90 35 ( a 2 15 ) 2 + 150 ( a 2 15 ) + 135 = 0 7 ( a 2 15 ) 2 + 30 ( a 2 15 ) + 27 = 0 ( 7 ( a 2 15 ) + 9 ) ( a 2 15 + 3 ) = 0 ( 7 a 2 96 ) ( a 2 12 ) = 0 a 2 = 12 \begin{aligned} \frac 1{11} \sum_{n=1}^{11} a_n^2 & = 90 \\ 35(a_2-15)^2 +150 (a_2-15) + 225 & = 90 \\ 35(a_2-15)^2 +150 (a_2-15) + 135 & = 0 \\ 7(\color{#3D99F6}{a_2-15})^2 + 30(\color{#3D99F6}{a_2-15}) + 27 & = 0 \\ (7(\color{#3D99F6}{a_2-15})+9)(\color{#3D99F6}{a_2-15}+3) & = 0 \\ (7a_2-96)(a_2-12) & = 0 \\ \implies a_2 & = 12 \end{aligned}

a 2 = 96 7 a_2 = \dfrac {96}7 does not satisfy the condition 27 2 a 2 > 0 27 - 2a_2 > 0 .

Therefore, a n = 12 ( n 1 ) 15 ( n 2 ) = 18 3 n a_n = 12(n-1) - 15(n-2) = 18-3n , n = 1 11 a n = 15 + 12 + 9 + 6 + 3 + 0 3 6 9 12 15 = 0 \implies \displaystyle \sum_{n=1}^{11} a_n = 15+12+9+6+3+0-3-6-9-12-15 = 0 1 11 n = 1 11 a n = 0 \implies \displaystyle \frac 1{11} \sum_{n=1}^{11} a_n = \boxed{0} .

Moderator note:

From the characteristic equation of the linear recurrence, we can conclude that

a n = A n + B . a_{n} = An +B.

It remains to find these constants.

Very neat solution.Did the same way.

Indraneel Mukhopadhyaya - 4 years, 10 months ago
Shubhamkar Ayare
Aug 17, 2016
  • From a k = 2 a k 1 a k 2 a_k=2a_{k-1}-a_{k-2} , it follows that a k a k 1 = a k 1 a k 2 a_k-a_{k-1}=a_{k-1}-a_{k-2} , which may be used to conclude that the given sequence is an Arithmetic Progression.

  • Let a 5 d , a 4 d , . . . , a , a + d , a + 2 d , . . . , a + 5 d a-5d, a-4d, ..., a, a+d, a+2d, ..., a+5d be a 1 , a 2 , . . . , a 6 , a 7 , a 8 , . . . , a 11 a_1, a_2, ..., a_6, a_7, a_8, ..., a_{11} respectively, so that i = 1 11 a i 2 11 \frac{\sum_{i=1}^{11}a_i^2}{11} = 90 =90 reduces to a 2 + 10 d 2 = 90 a^2 + 10d^2 = 90 . And now, we need to find i = 1 11 a i 11 \frac{\sum_{i=1}^{11}a_i}{11} = a =a

  • Also a 5 d = 15 a-5d=15 , or a = 15 + 5 d a=15+5d . Solve the equation obtained in previous step for d d .

  • And 2 d = 2 a 1 2 a 2 = 30 2 a 2 = 3 + ( 27 2 a 2 ) > 3 -2d=2a_1-2a_2=30-2a_2=3+(27-2a_2)>3 can be used to eliminate one value of d d to yield the single value d = 3 d=-3 .

  • Thus, a = 15 + 5 d = 0 a=15+5d=0 .

Great solution

space sizzlers - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...