JEE Problem

Geometry Level 4

The answer to the question is of the form a b \frac{a}{b} , where a a and b b are coprime natural numbers.
Find a b a-b .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ayush Garg
Sep 8, 2014

First solving the inner bracket,

1 + k = 1 n 2 k 1+\sum _{ k=1 }^{ n }{ 2k } = 1+ n 2 ( 4 + 2 ( n 1 ) ) \frac { n }{ 2 } \left( 4+2(n-1) \right) = n 2 + n + 1 { n }^{ 2 }+n+1

Now,

cot 1 ( n 2 + n + 1 ) = cot 1 ( n ( n + 1 ) + 1 ( n + 1 ) n ) = cot 1 n cot 1 ( n + 1 ) \cot ^{ -1 }{ \left( { n }^{ 2 }+n+1 \right) =\cot ^{ -1 }{ \left( \frac { n\left( n+1 \right) +1 }{ (n+1)-n } \right) } }=\cot ^{ -1 }{ n } -\cot ^{ -1 }{ (n+1 } )

Using V n V_{n} summation,

n = 1 23 ( cot 1 n cot 1 ( n + 1 ) ) = cot 1 1 cot 1 24 \sum _{ n=1 }^{ 23 }{ \left( \cot ^{ -1 }{ n } -\cot ^{ -1 }{ (n+1 } ) \right) } = \cot ^{ -1 }{ 1 } -\cot ^{ -1 }{ 24 }

cot ( cot 1 1 cot 1 24 ) = cot ( cot 1 ( 24 + 1 23 ) ) = 25 23 \cot { \left( \cot ^{ -1 }{ 1-\cot ^{ -1 }{ 24 } } \right) } =\quad \cot { \left( \cot ^{ -1 }{ \left( \frac { 24+1 }{ 23 } \right) } \right) } = \frac { 25 }{ 23 }

25 23 = 2 \boxed{25-23=2}

good explaination!

Priyesh Pandey - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...