P ( x ) = x 6 − x 5 − x 3 − x 2 − x and denote α , β , γ , δ to be the roots of the equation x 4 − x 3 − x 2 − 1 = 0
LetFind the value of P ( α ) + P ( β ) + P ( γ ) + P ( δ )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
My method is the same as yours except for the factoring part. I went for a rather simplistic approach, albeit technically it's the same as yours.
x 4 − x 3 − x 2 − 1 = 0 ⟹ x 6 − x 5 − x 4 − x 2 = 0 ⟹ ( x 6 − x 5 − x 2 ) = x 4 = ( x 3 + x 2 + 1 ) ⟹ P ( x ) = ( x 6 − x 5 − x 3 − x 2 − x ) = ( x 2 − x + 1 ) ⟹ P ( x ) = x 2 − x + 1
From the definition of P we can write
P ( α ) = α 6 − α 5 − α 3 − α 2 − α
Use the equation in x to simplify the third and fourth terms to get
P ( α ) = α 6 − α 5 − α 4 + 1 − α
⟹ P ( α ) = α 2 ( α 4 − α 3 − α 2 ) + 1 − α
Now use the equation in x again to simplify the expression in brackets to get
P ( α ) = α 2 + 1 − α
Repeating this argument for the other roots lets us write
P ( α ) + P ( β ) + P ( γ ) + P ( δ ) = ( α 2 + β 2 + γ 2 + δ 2 ) − ( α + β + γ + δ ) + 4
Applying Newton's identities for the sums of the powers of the roots of a polynomial to the equation in x then gives the result
P ( α ) + P ( β ) + P ( γ ) + P ( δ ) = 3 − 1 + 4 = 6
Addendum
Newton's identities are a sequence of recursive formula for finding the sums of the powers of the roots of a polynomial equation.
For the equation
x n + b x n − 1 + c x n − 2 + ⋯ = 0
they begin
sum of roots = S = − b
sum of the squares of roots = − b S − 2 c
P ( x ) = x 6 − x 5 − x 3 − x 2 − x we only care about x where x 4 − x 3 − x 2 − 1 = 0 which is when x = α , β , γ , or δ . So for these x values P ( x ) − ( x 4 − x 3 − x 2 − 1 ) = P ( x ) .
So P ( x ) = x 6 − x 5 − x 3 − x 2 − x − ( x 4 − x 3 − x 2 − 1 )
= x 6 − x 5 − x 4 − x + 1
= x 2 ( x 4 − x 3 − x 2 ) − x + 1 .
since x 4 − x 3 − x 2 − 1 = 0 , x 4 − x 3 − x 2 = 1 . So P ( x ) = x 2 − x + 1 . P ( x ) − 2 = x 2 − x − 1 = x 2 x 4 − x 3 − x 2 = x 2 1 . Thus P ( x ) = 2 + x 2 1 .
x 4 − x 3 − x 2 − 1 = ( x + 1 ) ( x 3 − 2 x 2 + x − 1 )
Let δ = − 1 and α , β , and γ be the roots of the equation x 3 − 2 x 2 + x − 1 = 0 .
P ( α ) + P ( β ) + P ( γ ) + P ( − 1 ) = 2 + α 2 1 + 2 + β 2 1 + 2 + γ 2 1 + 2 + ( − 1 ) 2 1 = 9 + α 2 1 + β 2 1 + γ 2 1 .
Use vietas on x 3 − 2 x 2 + x − 1 = 0 .
α + β + γ = 2
α β + β γ + α γ = − 1
α β γ = 1
α 2 1 + β 2 1 + γ 2 1 = ( α β γ ) 2 ( α β ) 2 + ( β γ ) 2 + ( α γ ) 2 = ( α β γ ) 2 ( α β + β γ + α γ ) 2 − 2 ( α + β + γ ) ( α β γ ) =
( 1 ) 2 ( − 1 ) 2 − 2 ( 2 ) ( 1 ) = − 3 .
P ( α ) + P ( β ) + P ( γ ) + P ( − 1 ) = 9 + α 2 1 + β 2 1 + γ 2 1 = 9 − 3 = 6
Your p (x) is only true if x=roots of the given eq. (alpha, ....)
Log in to reply
I only consider x for these roots in my p(x) since p(x) at these roots are all I care about
Problem Loading...
Note Loading...
Set Loading...
P ( x ) = x 6 − x 5 − x 3 − x 2 − x = x 2 ( x 4 − x 3 − x 2 − 1 ) + x 4 − x 3 − x = x 2 ( x 4 − x 3 − x 2 − 1 ) + ( x 4 − x 3 − x 2 − 1 ) + x 2 − x + 1 = ( x 2 + 1 ) ( x 4 − x 3 − x 2 − 1 ) + x 2 − x + 1
⇒ P ( α ) P ( β ) P ( γ ) P ( δ ) = 0 + α 2 − α + 1 = 0 + β 2 − β + 1 = 0 + γ 2 − γ + 1 = 0 + δ 2 − δ + 1
P ( α ) + P ( β ) + P ( γ ) + P ( δ ) = α 2 + β 2 + γ 2 + δ 2 − ( α + β + γ + δ ) + 4
Using Vieta's Formulas, we have:
α + β + γ + δ = 1
α β + α γ + α δ + β γ + β δ + γ δ = − 1
α 2 + β 2 + γ 2 + δ 2 = ( α + β + γ + δ ) 2 − 2 ( α β + α γ + α δ + β γ + β δ + γ δ ) = ( 1 ) 2 − 2 ( − 1 ) = 3
⇒ P ( α ) + P ( β ) + P ( γ ) + P ( δ ) = 3 − 1 + 4 = 6