JEE Polynomial 3

Algebra Level 5

Let P ( x ) = x 6 x 5 x 3 x 2 x P(x)= x^{6}-x^{5}-x^{3}-x^{2}-x and denote α , β , γ , δ \alpha , \beta , \gamma , \delta to be the roots of the equation x 4 x 3 x 2 1 = 0 x^{4}-x^{3}-x^{2}-1=0

Find the value of P ( α ) + P ( β ) + P ( γ ) + P ( δ ) P(\alpha) + P(\beta) + P(\gamma) + P( \delta)


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

P ( x ) = x 6 x 5 x 3 x 2 x = x 2 ( x 4 x 3 x 2 1 ) + x 4 x 3 x = x 2 ( x 4 x 3 x 2 1 ) + ( x 4 x 3 x 2 1 ) + x 2 x + 1 = ( x 2 + 1 ) ( x 4 x 3 x 2 1 ) + x 2 x + 1 \begin{aligned} P(x) & = x^6-x^5-x^3-x^2-x\\ & = x^2(x^4-x^3-x^2-1) + x^4-x^3-x \\ & = x^2(x^4-x^3-x^2-1) + (x^4-x^3-x^2-1)+x^2-x+1 \\ & = (x^2+1)(x^4-x^3-x^2-1) +x^2-x+1 \end{aligned}

P ( α ) = 0 + α 2 α + 1 P ( β ) = 0 + β 2 β + 1 P ( γ ) = 0 + γ 2 γ + 1 P ( δ ) = 0 + δ 2 δ + 1 \Rightarrow \begin{aligned} P(\alpha) & = 0 + \alpha^2-\alpha+1 \\ P(\beta) & = 0 + \beta^2-\beta+1 \\ P(\gamma) & = 0 + \gamma^2-\gamma+1 \\ P(\delta) & = 0 + \delta^2-\delta+1 \end{aligned}

P ( α ) + P ( β ) + P ( γ ) + P ( δ ) = α 2 + β 2 + γ 2 + δ 2 ( α + β + γ + δ ) + 4 P(\alpha) + P(\beta) + P(\gamma) + P(\delta) = \alpha^2+\beta^2 + \gamma^2 + \delta^2 -(\alpha+\beta + \gamma + \delta) +4

Using Vieta's Formulas, we have:

α + β + γ + δ = 1 \alpha+\beta + \gamma + \delta = 1

α β + α γ + α δ + β γ + β δ + γ δ = 1 \alpha\beta + \alpha\gamma + \alpha \delta+\beta\gamma + \beta\delta+ \gamma\delta = -1

α 2 + β 2 + γ 2 + δ 2 = ( α + β + γ + δ ) 2 2 ( α β + α γ + α δ + β γ + β δ + γ δ ) = ( 1 ) 2 2 ( 1 ) = 3 \alpha^2+\beta^2 + \gamma^2 + \delta^2 \\ \quad = (\alpha+\beta + \gamma + \delta)^2 - 2(\alpha\beta + \alpha\gamma + \alpha \delta+\beta\gamma + \beta\delta+ \gamma\delta) \\ \quad = (1)^2-2(-1) = 3

P ( α ) + P ( β ) + P ( γ ) + P ( δ ) = 3 1 + 4 = 6 \Rightarrow P(\alpha) + P(\beta) + P(\gamma) + P(\delta) = 3 -1+4 = \boxed{6}

My method is the same as yours except for the factoring part. I went for a rather simplistic approach, albeit technically it's the same as yours.

x 4 x 3 x 2 1 = 0 x 6 x 5 x 4 x 2 = 0 ( x 6 x 5 x 2 ) = x 4 = ( x 3 + x 2 + 1 ) P ( x ) = ( x 6 x 5 x 3 x 2 x ) = ( x 2 x + 1 ) P ( x ) = x 2 x + 1 x^4-x^3-x^2-1=0\\ \implies x^6-x^5-x^4-x^2=0\\ \implies (x^6-x^5-x^2)=x^4=(x^3+x^2+1)\\ \implies P(x)=(x^6-x^5-x^3-x^2-x)=(x^2-x+1)\\ \implies \boxed{P(x)=x^2-x+1}

Prasun Biswas - 6 years, 3 months ago

Log in to reply

Cool! Never thought of that!

Shreya R - 6 years, 3 months ago
Peter Macgregor
Mar 5, 2015

From the definition of P we can write

P ( α ) = α 6 α 5 α 3 α 2 α P(\alpha)=\alpha^6-\alpha^5-\alpha^3-\alpha^2-\alpha

Use the equation in x x to simplify the third and fourth terms to get

P ( α ) = α 6 α 5 α 4 + 1 α P(\alpha)=\alpha^6-\alpha^5-\alpha^4+1-\alpha

P ( α ) = α 2 ( α 4 α 3 α 2 ) + 1 α \implies P(\alpha)=\alpha^2(\alpha^4-\alpha^3-\alpha^2)+1-\alpha

Now use the equation in x x again to simplify the expression in brackets to get

P ( α ) = α 2 + 1 α P(\alpha)=\alpha^2+1-\alpha

Repeating this argument for the other roots lets us write

P ( α ) + P ( β ) + P ( γ ) + P ( δ ) = ( α 2 + β 2 + γ 2 + δ 2 ) ( α + β + γ + δ ) + 4 P(\alpha)+P(\beta)+P(\gamma)+P(\delta)=(\alpha^2+\beta^2+\gamma^2+\delta^2)-(\alpha+\beta+\gamma+\delta)+4

Applying Newton's identities for the sums of the powers of the roots of a polynomial to the equation in x x then gives the result

P ( α ) + P ( β ) + P ( γ ) + P ( δ ) = 3 1 + 4 = 6 P(\alpha)+P(\beta)+P(\gamma)+P(\delta)=3-1+4=\boxed{6}

Addendum

Newton's identities are a sequence of recursive formula for finding the sums of the powers of the roots of a polynomial equation.

For the equation

x n + b x n 1 + c x n 2 + = 0 x^n+bx^{n-1}+cx^{n-2}+\dots=0

they begin

sum of roots = S = b = S = -b

sum of the squares of roots = b S 2 c = -bS-2c

Jason Hughes
Mar 5, 2015

P ( x ) = x 6 x 5 x 3 x 2 x P(x)= x^6-x^5-x^3-x^2-x we only care about x x where x 4 x 3 x 2 1 = 0 x^4-x^3-x^2-1=0 which is when x = α , β , γ , x=\alpha, \beta, \gamma, or δ \delta . So for these x x values P ( x ) ( x 4 x 3 x 2 1 ) = P ( x ) P(x)- (x^4-x^3-x^2-1)=P(x) .

So P ( x ) = x 6 x 5 x 3 x 2 x ( x 4 x 3 x 2 1 ) P(x)=x^6-x^5-x^3-x^2-x-(x^4-x^3-x^2-1)

= x 6 x 5 x 4 x + 1 =x^6-x^5-x^4-x+1

= x 2 ( x 4 x 3 x 2 ) x + 1. =x^2(x^4-x^3-x^2)-x+1.

since x 4 x 3 x 2 1 = 0 , x 4 x 3 x 2 = 1. x^4-x^3-x^2-1=0, x^4-x^3-x^2=1. So P ( x ) = x 2 x + 1 P(x)= x^2-x+1 . P ( x ) 2 = x 2 x 1 = x 4 x 3 x 2 x 2 = 1 x 2 P(x)-2=x^2-x-1 =\frac{x^4-x^3-x^2}{x^2}=\frac{1}{x^2} . Thus P ( x ) = 2 + 1 x 2 P(x)=2+\frac{1}{x^2} .

x 4 x 3 x 2 1 = ( x + 1 ) ( x 3 2 x 2 + x 1 ) x^4-x^3-x^2-1=(x+1)(x^3-2x^2+x-1)

Let δ = 1 \delta=-1 and α , β , \alpha, \beta, and γ \gamma be the roots of the equation x 3 2 x 2 + x 1 = 0. x^3-2x^2+x-1=0.

P ( α ) + P ( β ) + P ( γ ) + P ( 1 ) = 2 + 1 α 2 + 2 + 1 β 2 + 2 + 1 γ 2 + 2 + 1 ( 1 ) 2 P(\alpha) + P(\beta) + P(\gamma) + P(-1) = 2+\frac{1}{\alpha^2}+2+\frac{1}{\beta^2}+2+\frac{1}{\gamma^2}+2+\frac{1}{(-1)^2} = 9 + 1 α 2 + 1 β 2 + 1 γ 2 9+\frac{1}{\alpha^2}+\frac{1}{\beta^2}+\frac{1}{\gamma^2} .

Use vietas on x 3 2 x 2 + x 1 = 0 x^3-2x^2+x-1=0 .

α + β + γ = 2 \alpha+\beta +\gamma =2

α β + β γ + α γ = 1 \alpha\beta+\beta\gamma +\alpha\gamma=-1

α β γ = 1 \alpha\beta\gamma=1

1 α 2 + 1 β 2 + 1 γ 2 = ( α β ) 2 + ( β γ ) 2 + ( α γ ) 2 ( α β γ ) 2 \frac{1}{\alpha^2}+\frac{1}{\beta^2}+\frac{1}{\gamma^2}=\frac{(\alpha\beta)^2+(\beta\gamma)^2 +(\alpha\gamma)^2}{(\alpha\beta\gamma)^2} = ( α β + β γ + α γ ) 2 2 ( α + β + γ ) ( α β γ ) ( α β γ ) 2 \frac{(\alpha\beta+\beta\gamma +\alpha\gamma)^2-2(\alpha+\beta +\gamma)(\alpha\beta\gamma)}{(\alpha\beta\gamma)^2} =

( 1 ) 2 2 ( 2 ) ( 1 ) ( 1 ) 2 = 3 \frac{(-1)^2-2(2)(1)}{(1)^2}=-3 .

P ( α ) + P ( β ) + P ( γ ) + P ( 1 ) = 9 + 1 α 2 + 1 β 2 + 1 γ 2 = 9 3 = 6 P(\alpha) + P(\beta) + P(\gamma) + P(-1) =9+\frac{1}{\alpha^2}+\frac{1}{\beta^2}+\frac{1}{\gamma^2} =9-3=\boxed{6}

Your p (x) is only true if x=roots of the given eq. (alpha, ....)

boon yang - 6 years, 3 months ago

Log in to reply

I only consider x for these roots in my p(x) since p(x) at these roots are all I care about

Jason Hughes - 6 years, 3 months ago

Log in to reply

I see .My mistake ; )

boon yang - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...